Find the number of integers x in range (1,N) for which x and x+1 have same number of divisors

Given an integer N. The task is to find the number of integers 1 < x < N, for which x and x + 1 have the same number of positive divisors.

Examples:

Input: N = 3
Output: 1
Divisors(1) = 1
Divisors(2) = 1 and 2
Divisors(3) = 1 and 3
Only valid x is 2.

Input: N = 15
Output: 2

Approach: Find the number of divisors of all numbers below N and store them in an array. And count the number of integers x such that x and x + 1 have the same number of positive divisors by running a loop.



Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 100005
  
// To store number of divisors and
// Prefix sum of such numbers
int d[N], pre[N];
  
// Function to find the number of integers
// 1 < x < N for which x and x + 1 have
// the same number of positive divisors
void Positive_Divisors()
{
    // Count the number of divisors
    for (int i = 1; i < N; i++) {
  
        // Run a loop upto sqrt(i)
        for (int j = 1; j * j <= i; j++) {
  
            // If j is divisor of i
            if (i % j == 0) {
  
                // If it is perfect square
                if (j * j == i)
                    d[i]++;
                else
                    d[i] += 2;
            }
        }
    }
  
    int ans = 0;
  
    // x and x+1 have same number of
    // positive divisors
    for (int i = 2; i < N; i++) {
        if (d[i] == d[i - 1])
            ans++;
        pre[i] = ans;
    }
}
  
// Driver code
int main()
{
    // Function call
    Positive_Divisors();
  
    int n = 15;
  
    // Required answer
    cout << pre[n] << endl;
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
{
      
static int N =100005;
  
// To store number of divisors and
// Prefix sum of such numbers
static int d[] = new int[N], pre[] = new int[N];
  
// Function to find the number of integers
// 1 < x < N for which x and x + 1 have
// the same number of positive divisors
static void Positive_Divisors()
{
    // Count the number of divisors
    for (int i = 1; i < N; i++)
    {
  
        // Run a loop upto sqrt(i)
        for (int j = 1; j * j <= i; j++) 
        {
  
            // If j is divisor of i
            if (i % j == 0)
            {
  
                // If it is perfect square
                if (j * j == i)
                    d[i]++;
                else
                    d[i] += 2;
            }
        }
    }
  
    int ans = 0;
  
    // x and x+1 have same number of
    // positive divisors
    for (int i = 2; i < N; i++)
    {
        if (d[i] == d[i - 1])
            ans++;
        pre[i] = ans;
    }
}
  
// Driver code
public static void main(String[] args)
{
    // Function call
    Positive_Divisors();
  
    int n = 15;
  
    // Required answer
    System.out.println(pre[n]);
}
}
  
/* This code contributed by PrinciRaj1992 */
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the above approach 
from math import sqrt;
  
N = 100005
  
# To store number of divisors and 
# Prefix sum of such numbers 
d = [0] * N
pre = [0] * N
  
# Function to find the number of integers 
# 1 < x < N for which x and x + 1 have 
# the same number of positive divisors 
def Positive_Divisors() :
      
    # Count the number of divisors 
    for i in range(N) :
  
        # Run a loop upto sqrt(i) 
        for j in range(1, int(sqrt(i)) + 1) :
  
            # If j is divisor of i 
            if (i % j == 0) :
  
                # If it is perfect square 
                if (j * j == i) :
                    d[i] += 1
                else :
                    d[i] += 2
  
    ans = 0
  
    # x and x+1 have same number of 
    # positive divisors 
    for i in range(2, N) : 
        if (d[i] == d[i - 1]) :
            ans += 1
        pre[i] = ans
      
# Driver code 
if __name__ == "__main__"
  
    # Function call 
    Positive_Divisors()
  
    n = 15
  
    # Required answer 
    print(pre[n]) 
  
# This code is contributed by Ryuga
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
      
static int N =100005;
  
// To store number of divisors and
// Prefix sum of such numbers
static int []d = new int[N]; 
static int []pre = new int[N];
  
// Function to find the number of integers
// 1 < x < N for which x and x + 1 have
// the same number of positive divisors
static void Positive_Divisors()
{
    // Count the number of divisors
    for (int i = 1; i < N; i++)
    {
  
        // Run a loop upto sqrt(i)
        for (int j = 1; j * j <= i; j++) 
        {
  
            // If j is divisor of i
            if (i % j == 0)
            {
  
                // If it is perfect square
                if (j * j == i)
                    d[i]++;
                else
                    d[i] += 2;
            }
        }
    }
  
    int ans = 0;
  
    // x and x+1 have same number of
    // positive divisors
    for (int i = 2; i < N; i++)
    {
        if (d[i] == d[i - 1])
            ans++;
        pre[i] = ans;
    }
}
  
// Driver code
public static void Main(String[] args)
{
    // Function call
    Positive_Divisors();
  
    int n = 15;
  
    // Required answer
    Console.WriteLine(pre[n]);
}
}
  
// This code has been contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
  
// PHP implementation of the approach
  
$N = 100005;
  
// To store number of divisors and
// Prefix sum of such numbers
$d = array_fill(0,$N,NULL);
$pre = array_fill(0,$N,NULL);
  
// Function to find the number of integers
// 1 < x < N for which x and x + 1 have
// the same number of positive divisors
function Positive_Divisors()
{
    global $N,$d,$pre;
    // Count the number of divisors
    for ($i = 1; $i < $N; $i++) {
  
        // Run a loop upto sqrt(i)
        for ($j = 1; $j * $j <= $i; $j++) {
  
            // If j is divisor of i
            if ($i % $j == 0) {
  
                // If it is perfect square
                if ($j * $j == $i)
                    $d[$i]++;
                else
                    $d[$i] += 2;
            }
        }
    }
  
    $ans = 0;
  
    // x and x+1 have same number of
    // positive divisors
    for ($i = 2; $i < $N; $i++) {
        if ($d[$i] == $d[$i - 1])
            $ans++;
        $pre[$i] = $ans;
    }
}
  
// Driver code
  
    // Function call
    Positive_Divisors();
  
    $n = 15;
  
    // Required answer
    echo $pre[$n] ;
  
    return 0;
      
// This code is contributed by ChitraNayal
?>
chevron_right

Output:
2

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :