# Find the difference of count of equal elements on the right and the left for each element

Given an array arr[] of size N. The task is to find X – Y for each of the element where X is the count of j such that arr[i] = arr[j] and j > i. Y is the count of j such that arr[i] = arr[j] and j < i.

Examples:

Input: arr[] = {1, 2, 3, 2, 1}
Output: 1 1 0 -1 -1
For index 0, X – Y = 1 – 0 = 1
For index 1, X – Y = 1 – 0 = 1
For index 2, X – Y = 0 – 0 = 0
For index 3, X – Y = 0 – 1 = -1
For index 4, X – Y = 0 – 1 = -1

Input: arr[] = {1, 1, 1, 1, 1}
Output: 4 2 0 -2 -4

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: An effient approach is to use a map. One map is to store the count of each element in the array and another map to count the number of same elements left to each element.

Below is the implementation of the above approach:

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find the count of equal ` `// elements to the right - count of equal ` `// elements to the left for each of the element ` `void` `right_left(``int` `a[], ``int` `n) ` `{ ` ` `  `    ``// Maps to store the frequency and same ` `    ``// elements to the left of an element ` `    ``unordered_map<``int``, ``int``> total, left; ` ` `  `    ``// Count the frequency of each element ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``total[a[i]]++; ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``// Print the answer for each element ` `        ``cout << (total[a[i]] - 1 - (2 * left[a[i]])) << ``" "``; ` ` `  `        ``// Increment it's left frequency ` `        ``left[a[i]]++; ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `a[] = { 1, 2, 3, 2, 1 }; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a[0]); ` ` `  `    ``right_left(a, n); ` ` `  `    ``return` `0; ` `} `

 `// Java implementation of the approach ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to find the count of equal ` `// elements to the right - count of equal ` `// elements to the left for each of the element ` `static` `void` `right_left(``int` `a[], ``int` `n) ` `{ ` ` `  `    ``// Maps to store the frequency and same ` `    ``// elements to the left of an element ` `    ``Map total = ``new` `HashMap<>(); ` `    ``Map left = ``new` `HashMap<>(); ` ` `  `    ``// Count the frequency of each element ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `        ``total.put(a[i],  ` `        ``total.get(a[i]) == ``null` `? ``1` `:  ` `        ``total.get(a[i]) + ``1``); ` ` `  `    ``for` `(``int` `i = ``0``; i < n; i++)  ` `    ``{ ` ` `  `        ``// Print the answer for each element ` `        ``System.out.print((total.get(a[i]) - ``1` `-  ` `                         ``(``2` `* (left.containsKey(a[i]) == ``true` `?  ` `                               ``left.get(a[i]) : ``0``))) + ``" "``); ` ` `  `        ``// Increment it's left frequency ` `        ``left.put(a[i],  ` `        ``left.get(a[i]) == ``null` `? ``1` `:  ` `        ``left.get(a[i]) + ``1``); ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `a[] = { ``1``, ``2``, ``3``, ``2``, ``1` `}; ` `    ``int` `n = a.length; ` ` `  `    ``right_left(a, n); ` `} ` `} ` ` `  `// This code is contributed by Princi Singh `

 `# Python3 implementation of the approach  ` ` `  `# Function to find the count of equal  ` `# elements to the right - count of equal  ` `# elements to the left for each of the element  ` `def` `right_left(a, n) :  ` ` `  `    ``# Maps to store the frequency and same  ` `    ``# elements to the left of an element  ` `    ``total ``=` `dict``.fromkeys(a, ``0``); ` `    ``left ``=` `dict``.fromkeys(a, ``0``);  ` ` `  `    ``# Count the frequency of each element  ` `    ``for` `i ``in` `range``(n) : ` `        ``if` `a[i] ``not` `in` `total : ` `            ``total[a[i]] ``=` `1` `        ``total[a[i]] ``+``=` `1``;  ` ` `  `    ``for` `i ``in` `range``(n) : ` ` `  `        ``# Print the answer for each element  ` `        ``print``(total[a[i]] ``-` `1` `-` `(``2` `*` `left[a[i]]), ` `                                      ``end ``=` `" "``);  ` ` `  `        ``# Increment it's left frequency  ` `        ``left[a[i]] ``+``=` `1``;  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``a ``=` `[ ``1``, ``2``, ``3``, ``2``, ``1` `];  ` `    ``n ``=` `len``(a);  ` ` `  `    ``right_left(a, n);  ` ` `  `# This code is contributed by AnkitRai01 `

 `// C# implementation of the approach ` `using` `System; ` `using` `System.Collections.Generic; ` `     `  `class` `GFG ` `{ ` ` `  `// Function to find the count of equal ` `// elements to the right - count of equal ` `// elements to the left for each of the element ` `static` `void` `right_left(``int` `[]a, ``int` `n) ` `{ ` ` `  `    ``// Maps to store the frequency and same ` `    ``// elements to the left of an element ` `    ``Dictionary<``int``, ``int``> total = ``new` `Dictionary<``int``, ``int``>(); ` `    ``Dictionary<``int``, ``int``> left = ``new` `Dictionary<``int``, ``int``>(); ` ` `  `    ``// Count the frequency of each element ` `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{ ` `        ``if``(total.ContainsKey(a[i])) ` `        ``{ ` `            ``total[a[i]] = total[a[i]] + 1; ` `        ``} ` `        ``else``{ ` `            ``total.Add(a[i], 1); ` `        ``} ` `    ``} ` ` `  `    ``for` `(``int` `i = 0; i < n; i++)  ` `    ``{ ` ` `  `        ``// Print the answer for each element ` `        ``Console.Write((total[a[i]] - 1 -  ` `                      ``(2 * (left.ContainsKey(a[i]) == ``true` `?  ` `                                   ``left[a[i]] : 0))) + ``" "``); ` ` `  `        ``// Increment it's left frequency ` `        ``if``(left.ContainsKey(a[i])) ` `        ``{ ` `            ``left[a[i]] = left[a[i]] + 1; ` `        ``} ` `        ``else` `        ``{ ` `            ``left.Add(a[i], 1); ` `        ``} ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `[]a = { 1, 2, 3, 2, 1 }; ` `    ``int` `n = a.Length; ` ` `  `    ``right_left(a, n); ` `} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

Output:
```1 1 0 -1 -1
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :