Find sum of a number and its maximum prime factor

Given an integer N, the task is to find the sum of N and it’s maximum prime factor.

Examples:

Input: 19
Output: 38
Maximum prime factor of 19 is 19.
Hence, 19 + 19 = 38



Input: 8
Output: 10
8 + 2 = 10

Approach: Find the largest prime factor of the number and store it in maxPrimeFact then print the value of N + maxPrimeFact.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find sum of n and 
// it's largest prime factor
#include <cmath>
#include <iostream>
using namespace std;
  
// Function to return the sum of n and 
// it's largest prime factor
int maxPrimeFactors(int n)
{
    int num = n;
  
    // Initialise maxPrime to -1.
    int maxPrime = -1;
  
    while (n % 2 == 0) {
        maxPrime = 2;
        n /= 2;
    }
  
    // n must be odd at this point, thus skip
    // the even numbers and iterate only odd numbers
    for (int i = 3; i <= sqrt(n); i += 2) {
        while (n % i == 0) {
            maxPrime = i;
            n = n / i;
        }
    }
  
    // This condition is to handle the case
    // when n is a prime number greater  than 2
    if (n > 2)
        maxPrime = n;
  
    // finally return the sum.
    int sum = maxPrime + num;
    return sum;
}
  
// Driver Program to check the above function.
int main()
{
    int n = 19;
  
    cout << maxPrimeFactors(n);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of n and
// it's largest prime factor
import java.io.*;
  
class GFG
{
  
// Function to return the sum of n
// and it's largest prime factor
static int maxPrimeFactors(int n)
{
int num = n;
  
// Initialise maxPrime to -1.
int maxPrime = -1;
  
while (n % 2 == 0)
{
maxPrime = 2;
n /= 2;
}
  
// n must be odd at this point,
// thus skip the even numbers and
// iterate only odd numbers
for (int i = 3; i <= Math.sqrt(n); i += 2) {
      
    while (n % i == 0) { 
        maxPrime = i; n = n / i;
        
      
        // This condition is to handle the case 
        // when n is a prime number greater than 2 
        if (n > 2) {
            maxPrime = n;
        }
// finally return the sum.
int sum = maxPrime + num;
return sum;
}
  
// Driver Code
public static void main (String[] args)
{
int n = 19;
  
System.out.println(maxPrimeFactors(n));
}
}
// This code is contributed by anuj_67
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find sum of n and 
# it's largest prime factor
from math import sqrt
  
# Function to return the sum of n and 
# it's largest prime factor
def maxPrimeFactors(n):
    num = n
  
    # Initialise maxPrime to -1.
    maxPrime = -1;
  
    while (n % 2 == 0):
        maxPrime = 2
        n = n / 2
      
    # n must be odd at this point, thus skip
    # the even numbers and iterate only odd numbers
    p = int(sqrt(n) + 1)
    for i in range(3, p, 2):
        while (n % i == 0):
            maxPrime = i
            n = n / i
          
    # This condition is to handle the case
    # when n is a prime number greater than 2
    if (n > 2):
        maxPrime = n
  
    # finally return the sum.
    sum = maxPrime + num
    return sum
  
# Driver Code
if __name__ == '__main__':
    n = 19
  
    print(maxPrimeFactors(n))
  
# This code is contributed by 
# Surendra_Gangwar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum of n and
// it's largest prime factor
using System;
  
class GFG
{
// Function to return the sum of n
// and it's largest prime factor
static int maxPrimeFactors(int n)
{
int num = n;
  
// Initialise maxPrime to -1.
int maxPrime = -1;
  
while (n % 2 == 0)
{
    maxPrime = 2;
    n /= 2;
}
  
// n must be odd at this point,
// thus skip the even numbers and
// iterate only odd numbers
for (int i = 3; 
         i <= Math.Sqrt(n); i += 2) 
{
      
    while (n % i == 0) 
    
        maxPrime = i; n = n / i;
    
      
  
// This condition is to handle the case 
// when n is a prime number greater than 2 
if (n > 2) 
{
    maxPrime = n;
}
  
// finally return the sum.
int sum = maxPrime + num;
return sum;
}
  
// Driver Code
static void Main ()
{
    int n = 19;
      
    Console.WriteLine(maxPrimeFactors(n));
}
}
  
// This code is contributed by Ryuga
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find sum of n and 
// it's largest prime factor
  
// Function to return the sum of n 
// and it's largest prime factor
function maxPrimeFactors($n)
{
    $num = $n;
  
    // Initialise maxPrime to -1.
    $maxPrime = -1;
  
    while ($n % 2 == 0) 
    {
        $maxPrime = 2;
        $n /= 2;
    }
  
    // n must be odd at this point,
    // thus skip the even numbers 
    // and iterate only odd numbers
    for ($i = 3; $i <= sqrt($n); $i += 2) 
    {
        while ($n % $i == 0)
        {
            $maxPrime = $i;
            $n = $n / $i;
        }
    }
  
    // This condition is to handle the case
    // when n is a prime number greater than 2
    if ($n > 2)
        $maxPrime = $n;
  
    // finally return the sum.
    $sum = $maxPrime + $num;
    return $sum;
}
  
// Driver Code
$n = 19;
  
echo maxPrimeFactors($n);
  
// This code is contributed 
// by inder_verma
?>
chevron_right

Output:
38


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :