Find smallest perfect square number A such that N + A is also a perfect square number


Given a positive number N. The task is to find out the smallest perfect square number A such that N + A is also a perfect square number or return -1.

Examples:

Input: N = 3
Output: 1
Explanation: 
As 1 + 3 = 4 = 22Input: N=1
Output: -1

Naive Approach:
Traverse M from {1, 2, 3, 4, 5…} and check whether (N + M * M) is a perfect square number or not.

Efficient Approach:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ code to find out the smallest 
// perfect square X which when added to N 
// yields another perfect square number. 
#include<bits/stdc++.h>
using namespace std;
  
long SmallestPerfectSquare(long N){
      
    // X is the smallest perfect 
    // square number 
    long X = (long)1e9; 
    long ans; 
      
    // Loop from 1 to square root of N 
    for(int i = 1; i < sqrt(N); i++)
    
      
        // Condition to check whether i 
        // is factor of N or not 
        if (N % i == 0)
        
            long a = i; 
            long b = N / i; 
      
            // Condition to check whether 
            // factors satisfies the 
            // equation or not 
            if((b - a != 0) && ((b - a) % 2 == 0))
            
                          
                // Stores minimum value 
                X = min(X, (b - a) / 2); 
            
        
    
      
    // Return if X * X if X is not equal 
    // to 1e9 else return -1 
    if (X != 1e9) 
        ans = X * X; 
    else
        ans = -1; 
              
    return ans; 
      
// Driver code 
int main() 
{
    long N = 3; 
    cout << SmallestPerfectSquare(N); 
    return 0;
  
// This code is contributed by AnkitRai01 
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to find out the smallest 
// perfect square X which when added to N 
// yields another perfect square number. 
  
public class GFG {
      
  
    static long SmallestPerfectSquare(long N)
    {
      
        // X is the smallest perfect 
        // square number 
        long X = (long)1e9;
        long ans;
      
        // Loop from 1 to square root of N 
        for(int i = 1; i < Math.sqrt(N); i++){ 
      
            // Condition to check whether i 
            // is factor of N or not 
            if (N % i == 0){
                long a = i ;
                long b = N / i; 
      
                // Condition to check whether 
                // factors satisfies the 
                // equation or not 
                if ((b - a != 0) && ((b - a) % 2 == 0)){
                          
                    // Stores minimum value 
                    X = Math.min(X, (b - a) / 2) ;
                }
            }
        }
      
        // Return if X * X if X is not equal 
        // to 1e9 else return -1 
        if (X != 1e9)
            ans = X * X;
        else
            ans = -1;
              
        return ans; 
    }
      
    // Driver code 
    public static void main (String[] args){
        long N = 3;
          
        System.out.println(SmallestPerfectSquare(N)) ;
      
        }
}
// This code is contributed by AnkitRai01
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to find out the smallest
# perfect square X which when added to N
# yields another perfect square number.
import math
def SmallestPerfectSquare(N):
  
    # X is the smallest perfect 
    # square number 
    X = 1e9
  
    # Loop from 1 to square root of N
    for i in range(1, int(math.sqrt(N)) + 1):
  
        # Condition to check whether i 
        # is factor of N or not
        if N % i == 0:
            a = i
            b = N // i  
  
            # Condition to check whether  
            # factors satisfies the 
            # equation or not 
            if b - a != 0 and (b - a) % 2 == 0:
                     
                # Stores minimum value
                 X = min(X, (b - a) // 2)
  
    # Return if X * X if X is not equal
    # to 1e9 else return -1
    return(X * X if X != 1e9 else -1)
  
# Driver code 
if __name__ == "__main__" :  
    
    N = 3
    
    print(SmallestPerfectSquare(N))
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to find out the smallest 
// perfect square X which when added to N 
// yields another perfect square number. 
using System;
  
class GFG { 
      
    static long SmallestPerfectSquare(long N) 
    
        // X is the smallest perfect 
        // square number 
        long X = (long)1e9; 
        long ans; 
      
        // Loop from 1 to square root of N 
        for(int i = 1; i < Math.Sqrt(N); i++){ 
      
            // Condition to check whether i 
            // is factor of N or not 
            if (N % i == 0)
            
                long a = i; 
                long b = N / i; 
      
                // Condition to check whether 
                // factors satisfies the 
                // equation or not 
                if ((b - a != 0) && ((b - a) % 2 == 0))
                
                    // Stores minimum value 
                    X = Math.Min(X, (b - a) / 2); 
                
            
        
      
        // Return if X*X if X is not equal 
        // to 1e9 else return -1 
        if (X != 1e9) 
            ans = X * X; 
        else
            ans = -1; 
              
        return ans; 
    
      
    // Driver code 
    public static void Main (string[] args)
    
        long N = 3; 
        Console.WriteLine(SmallestPerfectSquare(N)); 
    
  
// This code is contributed by AnkitRai01 
  
chevron_right

Output:
1

Time complexity: sqrt(N)





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01

Article Tags :
Practice Tags :