# Find maximum volume of a cuboid from the given perimeter and area

Given a perimeter P and area A, the task is to calculate the maximum volume that can be made in form of cuboid from the given perimeter and surface area.

Examples :

```Input: P = 24, A = 24
Output: 8

Input: P = 20, A = 14
Output: 3
```

Approach: For a given perimeter of cuboid we have P = 4(l+b+h) —(i),
for given area of cuboid we have A = 2 (lb+bh+lh) —(ii).
Volume of cuboid is V = lbh
Volume is dependent on 3 variables l, b, h. Lets make it dependent on only length.

as V = lbh,
=> V = l (A/2-(lb+lh)) {from equation (ii)}
=> V = lA/2 – l2(b+h)
=> V = lA/2 – l2(P/4-l) {from equation (i)}
=> V = lA/2 – l2P/4 + l3 —-(iii)
Now differentiate V w.r.t l for finding maximum of volume.
dV/dl = A/2 – lP/2 + 3l2
After solving the quadratic in l we have l = (P – (P2-24A)1/2) / 12
Substituting value of l in (iii), we can easily find the maximum volume.

Below is the implementation of the above approach:

 `// C++ implementation of the above approach` `#include ` `using` `namespace` `std;`   `// function to return maximum volume` `float` `maxVol(``float` `P, ``float` `A)` `{` `    ``// calculate length` `    ``float` `l = (P - ``sqrt``(P * P - 24 * A)) / 12;`   `    ``// calculate volume` `    ``float` `V = l * (A / 2.0 - l * (P / 4.0 - l));`   `    ``// return result` `    ``return` `V;` `}`   `// Driver code` `int` `main()` `{` `    ``float` `P = 20, A = 16;` `  `  `    ``// Function call` `    ``cout << maxVol(P, A);`   `    ``return` `0;` `}`

 `// Java implementation of the above approach` `import` `java.util.*;`   `class` `Geeks {`   `    ``// function to return maximum volume` `    ``static` `float` `maxVol(``float` `P, ``float` `A)` `    ``{` `        ``// calculate length` `        ``float` `l` `            ``= (``float``)(P - Math.sqrt(P * P - ``24` `* A)) / ``12``;`   `        ``// calculate volume` `        ``float` `V` `            ``= (``float``)(l * (A / ``2.0` `- l * (P / ``4.0` `- l)));`   `        ``// return result` `        ``return` `V;` `    ``}`   `    ``// Driver code` `    ``public` `static` `void` `main(String args[])` `    ``{` `        ``float` `P = ``20``, A = ``16``;` `      `  `        ``// Function call` `        ``System.out.println(maxVol(P, A));` `    ``}` `}`   `// This code is contributed by Kirti_Mangal`

 `# Python3 implementation of the` `# above approach` `from` `math ``import` `sqrt`   `# function to return maximum volume`     `def` `maxVol(P, A):`   `    ``# calculate length` `    ``l ``=` `(P ``-` `sqrt(P ``*` `P ``-` `24` `*` `A)) ``/` `12`   `    ``# calculate volume` `    ``V ``=` `l ``*` `(A ``/` `2.0` `-` `l ``*` `(P ``/` `4.0` `-` `l))`   `    ``# return result` `    ``return` `V`     `# Driver code` `if` `__name__ ``=``=` `'__main__'``:` `    ``P ``=` `20` `    ``A ``=` `16` `    `  `    ``# Function call` `    ``print``(maxVol(P, A))`   `# This code is contributed` `# by Surendra_Gangwar`

 `// C# implementation of the above approach` `using` `System;`   `class` `GFG {`   `    ``// function to return maximum volume` `    ``static` `float` `maxVol(``float` `P, ``float` `A)` `    ``{` `        ``// calculate length` `        ``float` `l` `            ``= (``float``)(P - Math.Sqrt(P * P - 24 * A)) / 12;`   `        ``// calculate volume` `        ``float` `V` `            ``= (``float``)(l * (A / 2.0 - l * (P / 4.0 - l)));`   `        ``// return result` `        ``return` `V;` `    ``}`   `    ``// Driver code` `    ``public` `static` `void` `Main()` `    ``{` `        ``float` `P = 20, A = 16;` `       `  `        ``// Function call` `        ``Console.WriteLine(maxVol(P, A));` `    ``}` `}`   `// This code is contributed` `// by Akanksha Rai`

 ``

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Discovering ways to develop a plane for soaring career goals

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :