# Find K elements whose absolute difference with median of array is maximum

Given an array arr[] and an integer K, the task is to find the K elements of the array whose absolute difference with median of array is maximum.
Note: If two elements have equal difference then the maximum element is taken into consideration.
Examples:

Input : arr[] = {1, 2, 3, 4, 5}, k = 3
Output : {5, 1, 4}
Explanation :
Median m = 3,
Difference of each array elements from median,
1 ==> diff(1-3) = 2
2 ==> diff(2-3) = 1
3 ==> diff(3-3) = 0
4 ==> diff(4-3) = 1
5 ==> diff(5-3) = 2
First K elements are 5, 1, 4 in this array.
Input: arr[] = {1, 2, 3}, K = 2
Output: {3, 1}

Approach:

• Sort the array and find the median of the array
• Create a difference array to store the difference of each element with the median of the sorted array.
• Highest difference elements will be the corner elements of the array. Therefore, intialize the two pointers as both the corner elements of the array that is 0 and N – 1.
• Finally include the elements of the array one by one with the maximum difference with the median.

Below is the implementation of the above approach:

 `// C++ implementation to find first K ` `// elements whose difference with the  ` `// median of array is maximum ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function for calculating median  ` `double` `findMedian(``int` `a[], ``int` `n)  ` `{ ` `    ``// check for even case  ` `    ``if` `(n % 2 != 0)  ` `       ``return` `(``double``)a[n/2];  ` `       `  `    ``return` `(``double``)(a[(n-1)/2] + a[n/2])/2.0;  ` `}  ` ` `  `// Function to find the K maximum absolute ` `// difference with the median of the array ` `void` `kStrongest(``int` `arr[], ``int` `n, ``int` `k) ` `{ ` `    ``// Sort the array. ` `    ``sort(arr, arr + n); ` ` `  `    ``// Store median ` `    ``double` `median = findMedian(arr, n); ` `    ``int` `diff[n]; ` ` `  `    ``// Find and store difference ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``diff[i] = ``abs``(median - arr[i]); ` `    ``} ` ` `  `    ``int` `i = 0, j = n - 1; ` `    ``while` `(k > 0) { ` `         `  `        ``// If diff[i] is greater print it ` `        ``// Else print diff[j] ` `        ``if` `(diff[i] > diff[j]) { ` `            ``cout << arr[i] << ``" "``; ` `            ``i++; ` `        ``} ` `        ``else` `{ ` `            ``cout << arr[j] << ``" "``; ` `            ``j--; ` `        ``} ` `        ``k--; ` `    ``} ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, 2, 3, 4, 5 }; ` `    ``int` `k = 3; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]); ` ` `  `    ``kStrongest(arr, n, k); ` `    ``return` `0; ` `} `

 `// Java implementation to find first K ` `// elements whose difference with the  ` `// median of array is maximum ` `import` `java.util.*; ` `class` `GFG{ ` `  `  `// Function for calculating median  ` `static` `double` `findMedian(``int` `a[], ``int` `n)  ` `{ ` `    ``// check for even case  ` `    ``if` `(n % ``2` `!= ``0``)  ` `       ``return` `(``double``)a[n / ``2``];  ` `        `  `    ``return` `(``double``)(a[(n - ``1``) / ``2``] +  ` `                    ``a[n / ``2``]) / ``2.0``;  ` `}  ` `  `  `// Function to find the K maximum absolute ` `// difference with the median of the array ` `static` `void` `kStrongest(``int` `arr[], ``int` `n, ``int` `k) ` `{ ` `    ``// Sort the array. ` `    ``Arrays.sort(arr); ` `  `  `    ``// Store median ` `    ``double` `median = findMedian(arr, n); ` `    ``int` `[]diff = ``new` `int``[n]; ` `  `  `    ``// Find and store difference ` `    ``for` `(``int` `i = ``0``; i < n; i++)  ` `    ``{ ` `        ``diff[i] = (``int``)Math.abs(median - arr[i]); ` `    ``} ` `  `  `    ``int` `i = ``0``, j = n - ``1``; ` `    ``while` `(k > ``0``)  ` `    ``{ ` `          `  `        ``// If diff[i] is greater print it ` `        ``// Else print diff[j] ` `        ``if` `(diff[i] > diff[j]) ` `        ``{ ` `            ``System.out.print(arr[i] + ``" "``); ` `            ``i++; ` `        ``} ` `        ``else`  `        ``{ ` `            ``System.out.print(arr[j] + ``" "``); ` `            ``j--; ` `        ``} ` `        ``k--; ` `    ``} ` `} ` `  `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `arr[] = { ``1``, ``2``, ``3``, ``4``, ``5` `}; ` `    ``int` `k = ``3``; ` `    ``int` `n = arr.length; ` `  `  `    ``kStrongest(arr, n, k); ` `} ` `} ` `// This code is contributed by sapnasingh4991`

 `# Python3 program to find first K ` `# elements whose difference with the ` `# median of array is maximum ` ` `  `# Function for calculating median ` `def` `findMedian(a, n): ` `     `  `    ``# Check for even case ` `    ``if` `(n ``%` `2` `!``=` `0``): ` `        ``return` `a[``int``(n ``/` `2``)] ` `         `  `    ``return` `(a[``int``((n ``-` `1``) ``/` `2``)] ``+`  `            ``a[``int``(n ``/` `2``)]) ``/` `2.0` ` `  `# Function to find the K maximum  ` `# absolute difference with the  ` `# median of the array ` `def` `kStrongest(arr, n, k): ` `     `  `    ``# Sort the array ` `    ``arr.sort() ` `     `  `    ``# Store median ` `    ``median ``=` `findMedian(arr, n) ` `    ``diff ``=` `[``0``] ``*` `(n) ` `     `  `    ``# Find and store difference ` `    ``for` `i ``in` `range``(n): ` `        ``diff[i] ``=` `abs``(median ``-` `arr[i]) ` `         `  `    ``i ``=` `0` `    ``j ``=` `n ``-` `1` `     `  `    ``while` `(k > ``0``): ` `         `  `        ``# If diff[i] is greater print  ` `        ``# it. Else print diff[j] ` `        ``if` `(diff[i] > diff[j]): ` `            ``print``(arr[i], end ``=` `" "``) ` `            ``i ``+``=` `1` `        ``else``: ` `            ``print``(arr[j], end ``=` `" "``) ` `            ``j ``-``=` `1` `         `  `        ``k ``-``=` `1` `     `  `# Driver code ` `arr ``=` `[ ``1``, ``2``, ``3``, ``4``, ``5` `] ` `k ``=` `3` `n ``=` `len``(arr) ` ` `  `kStrongest(arr, n, k) ` ` `  `# This code is contributed by sanjoy_62 `

 `// C# implementation to find first K ` `// elements whose difference with the  ` `// median of array is maximum ` `using` `System; ` ` `  `class` `GFG{ ` ` `  `// Function for calculating median  ` `static` `double` `findMedian(``int` `[]a, ``int` `n)  ` `{ ` `    ``// Check for even case  ` `    ``if` `(n % 2 != 0)  ` `        ``return` `(``double``)a[n / 2];  ` `         `  `    ``return` `(``double``)(a[(n - 1) / 2] +  ` `                    ``a[n / 2]) / 2.0;  ` `}  ` ` `  `// Function to find the K maximum absolute ` `// difference with the median of the array ` `static` `void` `kStrongest(``int` `[]arr, ``int` `n, ` `                                  ``int` `k) ` `{ ` `     `  `    ``// Sort the array. ` `    ``Array.Sort(arr); ` `     `  `    ``int` `i = 0; ` `     `  `    ``// Store median ` `    ``double` `median = findMedian(arr, n); ` `    ``int` `[]diff = ``new` `int``[n]; ` ` `  `    ``// Find and store difference ` `    ``for``(i = 0; i < n; i++)  ` `    ``{ ` `       ``diff[i] = (``int``)Math.Abs(median - arr[i]); ` `    ``} ` ` `  `    ``int` `j = n - 1; ` `    ``i = 0; ` `    ``while` `(k > 0)  ` `    ``{ ` `         `  `        ``// If diff[i] is greater print it ` `        ``// Else print diff[j] ` `        ``if` `(diff[i] > diff[j]) ` `        ``{ ` `            ``Console.Write(arr[i] + ``" "``); ` `            ``i++; ` `        ``} ` `        ``else` `        ``{ ` `            ``Console.Write(arr[j] + ``" "``); ` `            ``j--; ` `        ``} ` `        ``k--; ` `    ``} ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `[]arr = { 1, 2, 3, 4, 5 }; ` `    ``int` `k = 3; ` `    ``int` `n = arr.Length; ` ` `  `    ``kStrongest(arr, n, k); ` `} ` `} ` ` `  `// This code is contributed by Rohit_ranjan `

Output:
`5 1 4`

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.