Find K elements whose absolute difference with median of array is maximum

Given an array arr[] and an integer K, the task is to find the K elements of the array whose absolute difference with median of array is maximum. 
Note: If two elements have equal difference then the maximum element is taken into consideration.
Examples: 
 

Input : arr[] = {1, 2, 3, 4, 5}, k = 3 
Output : {5, 1, 4} 
Explanation : 
Median m = 3, 
Difference of each array elements from median, 
1 ==> diff(1-3) = 2 
2 ==> diff(2-3) = 1 
3 ==> diff(3-3) = 0 
4 ==> diff(4-3) = 1 
5 ==> diff(5-3) = 2 
First K elements are 5, 1, 4 in this array.
Input: arr[] = {1, 2, 3}, K = 2 
Output: {3, 1} 
 

 

Approach: 
 

Below is the implementation of the above approach:
 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find first K
// elements whose difference with the 
// median of array is maximum
  
#include <bits/stdc++.h>
using namespace std;
  
// Function for calculating median 
double findMedian(int a[], int n) 
{
    // check for even case 
    if (n % 2 != 0) 
       return (double)a[n/2]; 
        
    return (double)(a[(n-1)/2] + a[n/2])/2.0; 
  
// Function to find the K maximum absolute
// difference with the median of the array
void kStrongest(int arr[], int n, int k)
{
    // Sort the array.
    sort(arr, arr + n);
  
    // Store median
    double median = findMedian(arr, n);
    int diff[n];
  
    // Find and store difference
    for (int i = 0; i < n; i++) {
        diff[i] = abs(median - arr[i]);
    }
  
    int i = 0, j = n - 1;
    while (k > 0) {
          
        // If diff[i] is greater print it
        // Else print diff[j]
        if (diff[i] > diff[j]) {
            cout << arr[i] << " ";
            i++;
        }
        else {
            cout << arr[j] << " ";
            j--;
        }
        k--;
    }
}
  
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int k = 3;
    int n = sizeof(arr) / sizeof(arr[0]);
  
    kStrongest(arr, n, k);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find first K
// elements whose difference with the 
// median of array is maximum
import java.util.*;
class GFG{
   
// Function for calculating median 
static double findMedian(int a[], int n) 
{
    // check for even case 
    if (n % 2 != 0
       return (double)a[n / 2]; 
         
    return (double)(a[(n - 1) / 2] + 
                    a[n / 2]) / 2.0
   
// Function to find the K maximum absolute
// difference with the median of the array
static void kStrongest(int arr[], int n, int k)
{
    // Sort the array.
    Arrays.sort(arr);
   
    // Store median
    double median = findMedian(arr, n);
    int []diff = new int[n];
   
    // Find and store difference
    for (int i = 0; i < n; i++) 
    {
        diff[i] = (int)Math.abs(median - arr[i]);
    }
   
    int i = 0, j = n - 1;
    while (k > 0
    {
           
        // If diff[i] is greater print it
        // Else print diff[j]
        if (diff[i] > diff[j])
        {
            System.out.print(arr[i] + " ");
            i++;
        }
        else 
        {
            System.out.print(arr[j] + " ");
            j--;
        }
        k--;
    }
}
   
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int k = 3;
    int n = arr.length;
   
    kStrongest(arr, n, k);
}
}
// This code is contributed by sapnasingh4991
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find first K
# elements whose difference with the
# median of array is maximum
  
# Function for calculating median
def findMedian(a, n):
      
    # Check for even case
    if (n % 2 != 0):
        return a[int(n / 2)]
          
    return (a[int((n - 1) / 2)] + 
            a[int(n / 2)]) / 2.0
  
# Function to find the K maximum 
# absolute difference with the 
# median of the array
def kStrongest(arr, n, k):
      
    # Sort the array
    arr.sort()
      
    # Store median
    median = findMedian(arr, n)
    diff = [0] * (n)
      
    # Find and store difference
    for i in range(n):
        diff[i] = abs(median - arr[i])
          
    i = 0
    j = n - 1
      
    while (k > 0):
          
        # If diff[i] is greater print 
        # it. Else print diff[j]
        if (diff[i] > diff[j]):
            print(arr[i], end = " ")
            i += 1
        else:
            print(arr[j], end = " ")
            j -= 1
          
        k -= 1
      
# Driver code
arr = [ 1, 2, 3, 4, 5 ]
k = 3
n = len(arr)
  
kStrongest(arr, n, k)
  
# This code is contributed by sanjoy_62
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find first K
// elements whose difference with the 
// median of array is maximum
using System;
  
class GFG{
  
// Function for calculating median 
static double findMedian(int []a, int n) 
{
    // Check for even case 
    if (n % 2 != 0) 
        return (double)a[n / 2]; 
          
    return (double)(a[(n - 1) / 2] + 
                    a[n / 2]) / 2.0; 
  
// Function to find the K maximum absolute
// difference with the median of the array
static void kStrongest(int []arr, int n,
                                  int k)
{
      
    // Sort the array.
    Array.Sort(arr);
      
    int i = 0;
      
    // Store median
    double median = findMedian(arr, n);
    int []diff = new int[n];
  
    // Find and store difference
    for(i = 0; i < n; i++) 
    {
       diff[i] = (int)Math.Abs(median - arr[i]);
    }
  
    int j = n - 1;
    i = 0;
    while (k > 0) 
    {
          
        // If diff[i] is greater print it
        // Else print diff[j]
        if (diff[i] > diff[j])
        {
            Console.Write(arr[i] + " ");
            i++;
        }
        else
        {
            Console.Write(arr[j] + " ");
            j--;
        }
        k--;
    }
}
  
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 1, 2, 3, 4, 5 };
    int k = 3;
    int n = arr.Length;
  
    kStrongest(arr, n, k);
}
}
  
// This code is contributed by Rohit_ranjan
chevron_right

Output:
5 1 4




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :