Open In App

Deep Neural Network With L – Layers

This article aims to implement a deep neural network with an arbitrary number of hidden layers each containing different numbers of neurons. We will be implementing this neural net using a few helper functions and at last, we will combine these functions to make the L-layer neural network model.
L – layer deep neural network structure (for understanding) 
 

L – layer neural network


The model’s structure is [LINEAR -> tanh](L-1 times) -> LINEAR -> SIGMOID. i.e., it has L-1 layers using the hyperbolic tangent function as activation function followed by the output layer with a sigmoid activation function. 
More about activation functions
Step by step implementation of the neural network: 
 



Initialize the parameters for the L layers
Implement the forward propagation module
Compute the loss at the final layer
Implement the backward propagation module
Finally, update the parameters
Train the model using existing training dataset
Use trained parameters to test model


Naming conventions followed in the article to prevent confusion: 
 


Dimensions of the weights and bias matrices. 
The input layer is of the size (x, m) where m is the number of images. 
 



Layer number Shape of W Shape of b Linear Output Shape of Activation
Layer 1
Layer 2
:
Layer L – 1
Layer L


Code: Importing all the required python libraries.
 

import time
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage

                    

Initialization: 
 


Code: 
 

def initialize_parameters_deep(layer_dims):
    # 0th layer is the input layer with number
    # of columns stored in layer_dims.
    parameters = {}
  
    # number of layers in the network
    L = len(layer_dims)            
  
    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], 
                                        layer_dims[l - 1])*0.01
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
  
    return parameters

                    

Forward propagation module: 
The Forward propagation module will be completed in three steps. We will complete three functions in this order:
 


The linear forward module (vectorized over all the examples) computes the following equations: 
Zi = Wi * A(i – 1) + bi Ai = activation_func(Zi)
Code: 
 

def linear_forward(A_prev, W, b):
  
    # cache is stored to be used in backward propagation module
    Z = np.dot(W, A_prev) + b
    cache = (A, W, b)
    return Z, cache

                    
def sigmoid(Z):
  
    A = 1/(1 + np.exp(-Z))
    return A, {'Z' : Z}
  
def tanh(Z):
  
    A = np.tanh(Z)
    return A, {'Z' : Z}
  
def linear_activation_forward(A_prev, W, b, activation):
  
    # cache is stored to be used in backward propagation module
    if activation == "sigmoid":
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
    elif activation == "tanh":
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = tanh(Z)
    cache = (linear_cache, activation_cache)
  
    return A, cache

                    
def L_model_forward(X, parameters):
    """
    Arguments:
    X -- data, numpy array of shape (input size, number of examples)
    parameters -- output of initialize_parameters_deep()
      
    Returns:
    AL -- last post-activation value
    caches -- list of caches containing:
                every cache of linear_activation_forward() 
           (there are L-1 of them, indexed from 0 to L-1)
    """
  
    caches = []
    A = X
  
    # number of layers in the neural network
    L = len(parameters) // 2                  
      
    # Implement [LINEAR -> TANH]*(L-1). Add "cache" to the "caches" list.
    for l in range(1, L):
        A_prev =
        A, cache = linear_activation_forward(A_prev,
                           parameters['W' + str(l)], 
                   parameters['b' + str(l)], 'tanh')
  
        caches.append(cache)
      
    # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
    AL, cache = linear_activation_forward(A, parameters['W' + str(L)],
                                  parameters['b' + str(L)], 'sigmoid')
    caches.append(cache)
  
    return AL, caches

                    

   


We will be using this cost function which will measure the cost for the output layer for all training data.
Code: 
 
def compute_cost(AL, Y):
    """
    Implement the cost function defined by the equation.
    m = Y.shape[1]
    cost = (-1 / m)*(np.dot(np.log(AL), Y.T)+np.dot(np.log((1-AL)), (1 - Y).T))
  
    # To make sure your cost's shape is what we 
    # expect (e.g. this turns [[20]] into 20).
    cost = np.squeeze(cost)      
  
    return cost

                    

Backward Propagation Module: 
Similar to the forward propagation module, we will be implementing three functions in this module too. 
 


For layer i, the linear part is: Zi = Wi * A(i – 1) + bi 
Denoting dZi = we can get dWi, dbi and dA(i – 1) as – 



These equations are formulated using differential calculus and keeping the dimensions of matrices appropriate for matrix dot multiplication using np.dot() function.
Code: Python code for Implementation 
 

def linear_backward(dZ, cache):
  
    A_prev, W, b = cache
    m = A_prev.shape[1]
    dW = (1 / m)*np.dot(dZ, A_prev.T)
    db = (1 / m)*np.sum(dZ, axis = 1, keepdims = True)
    dA_prev = np.dot(W.T, dZ)
      
    return dA_prev, dW, db

                    

Here we will be calculating derivative of sigmoid and tanh functions. 
Code: 
 

def sigmoid_backward(dA, activation_cache):
  
    Z = activation_cache['Z']
    A = sigmoid(Z)
    return dA * (A*(1 - A))    # A*(1 - A) is the derivative of sigmoid function
  
def tanh_backward(dA, activation_cache):
  
    Z = activation_cache['Z']
    A = sigmoid(Z)
    return dA * (1 -np.power(A, 2))   
    # A*(1 -

                    

L-model-backward: 
Recall that when you implemented the L_model_forward function, at each iteration, you stored a cache that contains (X, W, b, and Z). In the backpropagation module, you will use those variables to compute the gradients.
 

def L_model_backward(AL, Y, caches):
    """
    AL -- probability vector, output of the forward propagation (L_model_forward())
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
    caches -- list of caches containing:
                every cache of linear_activation_forward() with "tanh" 
                (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                the cache of linear_activation_forward() with "sigmoid"
                 (it's caches[L-1])
      
    Returns:
    grads -- A dictionary with the gradients
             grads["dA" + str(l)] = ... 
             grads["dW" + str(l)] = ...
             grads["db" + str(l)] = ... 
    """
    grads = {}
    L = len(caches) # the number of layers
    m = AL.shape[1]
    Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
      
    # Initializing the backpropagation
    # derivative of cost with respect to AL
   
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) 
      
    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current_cache".
    # Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"]
    current_cache = caches[L - 1]
    grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = \
                  linear_activation_backward(dAL, current_cache, 'sigmoid')
      
    # Loop from l = L-2 to l = 0
    for l in reversed(range(L-1)):
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(
                    grads['dA' + str(l + 1)], current_cache, 'tanh')
        grads["dA" + str(l)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
  
    return grads

                    

Update Parameters: 
Wi = Wi – a*dWi 
bi = bi – a*dbi 
(where a is an appropriate constant known as learning rate) 
 

def update_parameters(parameters, grads, learning_rate):
    L = len(parameters) // 2 # number of layers in the neural network
  
    # Update rule for each parameter. Use a for loop.
    for l in range(L):
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads['dW' + str(l + 1)]
        parameters["b" + str(l + 1)] = parameters['b' + str(l + 1)] - learning_rate * grads['db' + str(l + 1)]
  
    return parameters

                    

Code: Training the model
Now it is time to accumulate all the functions written before to form the final L-layered neural network model. The argument X in L_layer_model will be the training dataset and Y being the corresponding labels. 
 

def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost = False):
    """
    Arguments:
    X -- data, numpy array of shape (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat),
                                 of shape (1, number of examples)
    layers_dims -- list containing the input size and each layer size,
                                      of length (number of layers + 1).
    learning_rate -- learning rate of the gradient descent update rule
    num_iterations -- number of iterations of the optimization loop
    print_cost -- if True, it prints the cost every 100 steps
      
    Returns:
    parameters -- parameters learned by the model. They can then be used to predict.
    """
  
    np.random.seed(1)
    costs = []                         # keep track of cost
  
    parameters = initialize_parameters_deep(layers_dims)
      
    # Loop (gradient descent)
    for i in range(0, num_iterations):
  
        # Forward propagation: [LINEAR -> TANH]*(L-1) -> LINEAR -> SIGMOID.
        AL, caches = L_model_forward(X, parameters)
  
        # Compute cost.
        cost = compute_cost(AL, Y)
      
        # Backward propagation.
        grads = L_model_backward(AL, Y, caches)
  
        # Update parameters.
        parameters = update_parameters(parameters, grads, learning_rate)
                  
        # Print the cost every 100 training example
        if print_cost and i % 100 == 0:
            print ("Cost after iteration % i: % f" %(i, cost))
        if print_cost and i % 100 == 0:
            costs.append(cost)
              
    # plot the cost
    plt.plot(np.squeeze(costs))
    plt.ylabel('cost')
    plt.xlabel('iterations (per hundreds)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()
      
    return parameters

                    

Code: Implementing the predict function to test the image provided. 
 

def predict(parameters, path_image):
  
    my_image = path_image
    image = np.array(ndimage.imread(my_image, flatten = False))
    my_image = scipy.misc.imresize(image, 
                  size =(num_px, num_px)).reshape((
                          num_px * num_px * 3, 1))
  
    my_image = my_image / 255.
    output, cache = L_model_forward(my_image, parameters)
    output = np.squeeze(output)
    prediction = round(output)
    if(prediction == 1):
        label = "Cat picture"
    else:
        label = "Non-Cat picture"   # If the model is trained to recognize a cat image.
    print ("y = " + str(prediction) + ", your L-layer model predicts a \"" + label)

                    

Provided layers_dims = [12288, 20, 7, 5, 1] when this model is trained with an appropriate amount of training dataset it is up to 80% accurate on test data. 
The parameters are found after training with an appropriate amount of training dataset. 
 

{'W1': array([[ 0.01672799, -0.00641608, -0.00338875, ..., -0.00685887,
        -0.005937830.01060475],
       [ 0.013958080.00407498, -0.0049068, ...,  0.01317046,
         0.002213260.00930175],
       [-0.00123843, -0.005972040.00472214, ...,  0.00101904,
        -0.00862638, -0.00505112],
       ..., 
       [ 0.00140823, -0.001377110.0163992, ..., -0.00846451,
        -0.00761603, -0.00149162],
       [-0.00168698, -0.00618577, -0.01023935, ...,  0.02050705,
        -0.004281850.00149319],
       [-0.01770891, -0.00678360.00756873, ...,  0.01730701,
         0.01297081, -0.00322241]]), 'b1': array([[  3.85542520e-03],
       8.18087056e-03],
       6.52138546e-03],
       2.85633678e-03],
       6.01081275e-03],
       8.17122684e-04],
       3.72986493e-04],
       7.05992009e-04],
       4.36344692e-04],
       1.90827285e-03],
       [ -6.51686461e-03],
       6.97258125e-03],
       [ -1.08988113e-03],
       5.40858776e-03],
       8.16752511e-03],
       [ -1.05298871e-02],
       [ -9.05267219e-05],
       [ -5.13240993e-04],
       1.42355924e-03],
       [ -2.40912130e-03]]), 'W2': array([[  2.02109232e-01-3.08645240e-01-3.77620591e-01,
         -4.02563039e-02,   5.90753267e-02,   1.23345558e-01,
          3.08047246e-01,   4.71201576e-02,   5.29892230e-02,
          1.34732883e-01,   2.15804697e-01-6.34295948e-01,
         -1.56081006e-01,   1.01905466e-01-1.50584386e-01,
          5.31219819e-02,   1.14257132e-01,   4.20697960e-01,
          1.08551174e-01-2.18735332e-01],
       3.57091131e-01-1.40997155e-01,   3.70857247e-01,
          2.53207014e-01-1.12596978e-01-3.15179195e-01,
         -2.48100731e-01,   4.72723584e-01-7.71870940e-02,
          5.39834663e-01-1.17927181e-02,   6.45463019e-02,
          2.73704423e-02,   4.30157714e-01,   1.59318390e-01,
         -6.48089126e-01-1.71894333e-01,   1.77933527e-01,
          1.54736463e-01-7.26815274e-02],
       2.96501527e-01,   2.43056424e-01-1.22400000e-02,
          2.69275366e-02,   3.76041647e-01-1.70245407e-01,
         -2.95343754e-02-7.35716150e-02-1.80179693e-01,
         -5.77515859e-03-6.38323383e-01,   6.94950669e-02,
          7.66137263e-02,   3.66599261e-01,   5.40904716e-02,
         -1.51814996e-01-2.61672559e-01,   1.35946854e-01,
          4.21086332e-01-2.71073484e-01],
       1.42186042e-01-2.66789439e-01,   4.57188131e-01,
          2.84732743e-02-5.49143391e-02-3.96786581e-02,
         -1.68668726e-01-1.46525541e-01,   3.25325993e-03,
         -1.13045329e-01,   4.03935681e-01-3.92214264e-01,
          5.25325051e-04-3.69642647e-01-1.15812921e-01,
          1.32695899e-01,   3.20810624e-01,   1.88127350e-01,
         -4.82784806e-02-1.48816756e-01],
       [ -1.65469406e-01,   4.24741323e-01-5.76900900e-01,
          1.58084434e-01-2.90965849e-01,   3.40124014e-02,
         -2.62189635e-01,   2.66917709e-01,   4.77530579e-01,
         -1.73491365e-01-1.48434710e-01-6.91270097e-02,
          5.42923817e-03-2.85173244e-01,   6.40701002e-02,
         -7.33126171e-02,   1.43543481e-01,   7.82250247e-02,
         -1.47535352e-01-3.99073661e-01],
       [ -2.05468389e-01,   1.66914752e-01,   2.15918881e-01,
          2.21774761e-01,   2.52527888e-01,   2.64464223e-01,
         -3.07796263e-02-3.06999665e-01,   3.45835418e-01,
          1.05973413e-01-3.47687682e-01,   9.13383273e-02,
          3.97150339e-02-3.14285982e-01,   2.22363710e-01,
         -3.93921988e-01-9.70224337e-02-3.03701358e-01,
          1.40075127e-01-4.56621577e-01],
       2.06819296e-01-2.39537245e-01-4.06133490e-01,
          5.92692802e-02,   8.95374287e-02-3.27700300e-01,
         -6.89856027e-02-6.13447906e-01,   1.89927573e-01,
         -1.42814095e-01,   1.77958823e-03-1.34407806e-01,
          9.34036862e-02-2.00549616e-02,   9.01789763e-02,
          3.81627943e-01,   3.30416268e-01-1.76566228e-02,
          9.28388267e-02-1.16167106e-01]]), 'b2': array([[-0.00088887],
       [ 0.02357712],
       [ 0.01858614],
       [-0.00567557],
       [ 0.00636179],
       [ 0.02362429],
       [-0.00173074]]), 'W3': array([[ 0.209397860.219774780.77135171, -1.07520777, -0.64307173,
        -0.24097649, -0.15626735],
       [-0.579976180.30851841, -0.03802324, -0.134899750.23488207,
         0.76248961, -0.34515092],
       [ 0.159902950.51639690.152843810.42790606, -0.05980168,
         0.87865156, -0.01031899],
       [ 0.529082820.938824711.23044256, -0.014812860.41024244,
         0.18731983, -0.01414658],
       [-0.96753783, -0.304920020.54060558, -0.18776932, -0.39245146,
         0.20654634, -0.58863038]]), 'b3': array([[ 0.8623361 ],
       [-0.00826002],
       [-0.01151116],
       [-0.06844291],
       [-0.00833715]]), 'W4': array([[-0.830459670.184188240.858853521.410241150.12713131]]), 'b4': array([[-1.73123633]])}

                    

Testing a custom image 
 


 

my_image = "https://www.pexels.com / photo / adorable-animal-blur-cat-617278/"
predict(parameters, my_image)

                    

Output with learnt parameters: 
 

y = 1, your L-layer model predicts a Cat picture.


 


Article Tags :