Open In App

Count of permutations of an Array having each element as a multiple or a factor of its index

Given an integer, N, the task is to count the number of ways to generate an array, arr[] of consisting of N integers such that for every index i(1-based indexing), arr[i] is either a factor or a multiple of i, or both. The arr[] must be the permutations of all the numbers from the range [1, N].

Examples:

Input: N=2
Output: 2
Explanation:
Two possible arrangements are {1, 2} and {2, 1}

Input: N=3
Output: 3
Explanation:
The 6 possible arrangements are {1, 2, 3}, {2, 1, 3}, {3, 2, 1}, {3, 1, 2}, {2, 3, 1} and {1, 3, 2}.
Among them, the valid arrangements are {1, 2, 3}, {2, 1, 3} and {3, 2, 1}.

Approach: The problem can be solved using Backtracking technique and the concept of print all permutations using recursion. Follow the steps below to find the recurrence relation:

  1. Traverse the range [1, N].
  2. For the current index pos, if i % pos == 0 and i % pos == 0, then insert i into the arrangement and use the concept of Backtracking to find valid permutations.
  3. Remove i.
  4. Repeat the above steps for all values in the range [1, N], and finally, print the count of valid permutations.

Below is the implementation of the above approach:

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;

// Function to find the count of
// desired permutations
int findPermutation(unordered_set<int>& arr,
                    int N)
{
    int pos = arr.size() + 1;

    // Base case
    if (pos > N)
        return 1;

    int res = 0;

    for (int i = 1; i <= N; i++) {

        // If i has not been inserted
        if (arr.find(i) == arr.end()) {

            // Backtrack
            if (i % pos == 0 or pos % i == 0) {

                // Insert i
                arr.insert(i);

                // Recur to find valid permutations
                res += findPermutation(arr, N);

                // Remove i
                arr.erase(arr.find(i));
            }
        }
    }

    // Return the final count
    return res;
}

// Driver Code
int main()
{
    int N = 5;
    unordered_set<int> arr;
    cout << findPermutation(arr, N);

    return 0;
}
// Java program to implement
// the above approach
import java.util.*;

class GFG{
    
// Function to find the count of
// desired permutations
static int findPermutation(Set<Integer>arr,
                           int N)
{
    int pos = arr.size() + 1;

    // Base case
    if (pos > N)
        return 1;

    int res = 0;

    for(int i = 1; i <= N; i++) 
    {
        
        // If i has not been inserted
        if (! arr.contains(i))
        {
            
            // Backtrack
            if (i % pos == 0 || pos % i == 0)
            {
                
                // Insert i
                arr.add(i);

                // Recur to find valid permutations
                res += findPermutation(arr, N);

                // Remove i
                arr.remove(i);
            }
        }
    }

    // Return the final count
    return res;
}

// Driver Code
public static void main(String []args)
{
    int N = 5;
    Set<Integer> arr = new HashSet<Integer>();
    
    System.out.print(findPermutation(arr, N));
}
}

// This code is contributed by chitranayal
# Python3 program to implement
# the above approach

# Function to find the count of
# desired permutations
def findPermutation(arr, N):

    pos = len(arr) + 1

    # Base case
    if(pos > N):
        return 1

    res = 0

    for i in range(1, N + 1):

        # If i has not been inserted
        if(i not in arr):

            # Backtrack
            if(i % pos == 0 or pos % i == 0):

                # Insert i
                arr.add(i)

                # Recur to find valid permutations
                res += findPermutation(arr, N)

                # Remove i
                arr.remove(i)

    # Return the final count
    return res

# Driver Code
N = 5
arr = set()

# Function call
print(findPermutation(arr, N))

# This code is contributed by Shivam Singh
// C# program to implement
// the above approach
using System;
using System.Collections.Generic;

class GFG{
    
// Function to find the count of
// desired permutations
static int findPermutation(HashSet<int>arr,
                           int N)
{
    int pos = arr.Count + 1;

    // Base case
    if (pos > N)
        return 1;

    int res = 0;

    for(int i = 1; i <= N; i++) 
    {
        
        // If i has not been inserted
        if (! arr.Contains(i))
        {
            
            // Backtrack
            if (i % pos == 0 || pos % i == 0)
            {
                
                // Insert i
                arr.Add(i);

                // Recur to find valid permutations
                res += findPermutation(arr, N);

                // Remove i
                arr.Remove(i);
            }
        }
    }

    // Return the readonly count
    return res;
}

// Driver Code
public static void Main(String []args)
{
    int N = 5;
    HashSet<int> arr = new HashSet<int>();
    
    Console.Write(findPermutation(arr, N));
}
}

// This code is contributed by gauravrajput1 
// Javascript program to implement
// the above approach

// Function to find the count of
// desired permutations
function findPermutation(arr, N)
{
    var pos = arr.size + 1;

    // Base case
    if (pos > N)
        return 1;

    var res = 0;

    for(var i = 1; i <= N; i++)
    {
        
        // If i has not been inserted
        if (!arr.has(i)) 
        {
            
            // Backtrack
            if (i % pos == 0 || pos % i == 0) 
            {
                
                // Insert i
                arr.add(i);

                // Recur to find valid permutations
                res += findPermutation(arr, N);

                // Remove i
                arr.delete(i);
            }
        }
    }

    // Return the final count
    return res;
}

// Driver Code
var N = 5;
var arr = new Set();

console.log(findPermutation(arr, N));

// This code is contributed by importantly

Output
10

Time Complexity: O(N×N!)
Auxiliary Space: O(N)
 

Using Brute Force in python:

Approach:

The first approach is to generate all possible permutations of the array and check if each element is a multiple or a factor of its index. We can do this using a recursive function to generate permutations and then checking each permutation.

def is_valid(arr):
    for i in range(len(arr)):
        if arr[i] % (i+1) != 0 and (i+1) % arr[i] != 0:
            return False
    return True

def generate_permutations(arr, l, r, valid_permutations):
    if l == r:
        if is_valid(arr):
            valid_permutations.append(arr[:])
    else:
        for i in range(l, r+1):
            arr[l], arr[i] = arr[i], arr[l]
            generate_permutations(arr, l+1, r, valid_permutations)
            arr[l], arr[i] = arr[i], arr[l]

def count_permutations(n):
    arr = [i+1 for i in range(n)]
    valid_permutations = []
    generate_permutations(arr, 0, n-1, valid_permutations)
    return len(valid_permutations)

print(count_permutations(2)) # Output: 2
print(count_permutations(3)) # Output: 3

Output
2
3

Time Complexity: O(n!)
Space Complexity: O(n!)

Using Dynamic Programming:

Approach:

  1. Initialize a 2D array dp to store the count of permutations. Each cell dp[i][j] represents the count of permutations with i elements and j numbers selected.
  2. Initialize the base case dp[0][0] = 1.
  3. Fill the dp array using dynamic programming. Iterate over the range [1, N] for the number of elements and [0, N] for the selected numbers.
  4. For each element i, iterate over the range [1, min(i, j)] to represent selecting each number up to i or j, whichever is smaller.
  5. Increment dp[i][j] by dp[i - 1][j - k] for permutations including the current number i, where k represents the selected number.
  6. Increment dp[i][j] by dp[i - 1][j] for permutations excluding the current number i.
  7. Sum up the counts of all valid permutations stored in dp[N].
  8. Return the count of valid permutations.
#include <iostream>
#include <vector>
using namespace std;

int countPermutations(int N) {
    // Initialize a 2D vector to store the count of permutations
    vector<vector<int>> dp(N + 1, vector<int>(N + 1, 0));
    
    // Initialize the base case
    dp[0][0] = 1;
    
    // Fill the dp array using dynamic programming
    for (int i = 1; i <= N; ++i) {
        for (int j = 0; j <= N; ++j) {
            for (int k = 1; k <= i; ++k) {
                // If either i is divisible by k or k is divisible by i, update dp[i][j]
                if (i % k == 0 || k % i == 0) {
                    dp[i][j] += dp[i - 1][j - 1];
                }
            }
        }
    }
    
    // Sum up the counts of all valid permutations
    int count = 0;
    for (int j = 1; j <= N; ++j) {
        count += dp[N][j];
    }
    
    return count;
}

int main() {
    // Test cases
    cout << countPermutations(2) << endl;  // Output: 2
    return 0;
}
import java.util.*;

public class Main {

    /**
     * This method calculates the number of permutations of the set {1, 2, ..., N}
     * where each permutation has the property that for every i in the permutation,
     * i % k == 0 or k % i == 0 for all k in {1, 2, ..., N}.
     *
     * @param N the size of the set from which to generate permutations.
     * @return the number of valid permutations.
     */
    public static int countPermutations(int N) {
        // Initialize a 2D array (dp table) to store the count of permutations.
        int[][] dp = new int[N + 1][N + 1];
        
        // Base case: one permutation of the empty set.
        dp[0][0] = 1;
        
        // Fill the dp array using dynamic programming.
        for (int i = 1; i <= N; i++) {
            for (int j = 0; j <= N; j++) {
                for (int k = 1; k <= i; k++) {
                    // If either i is divisible by k or k is divisible by i, update dp[i][j].
                    if (i % k == 0 || k % i == 0) {
                        dp[i][j] += (j > 0) ? dp[i - 1][j - 1] : 0;
                    }
                }
            }
        }
        
        // Sum up the counts of all valid permutations.
        int count = 0;
        for (int j = 1; j <= N; j++) {
            count += dp[N][j];
        }
        
        return count;
    }

    public static void main(String[] args) {
        // Test cases
        System.out.println(countPermutations(2));  // Output: 2
    }
}
def countPermutations(N):
    # Initialize a 2D array to store the count of permutations
    dp = [[0] * (N + 1) for _ in range(N + 1)]
    
    # Initialize the base case
    dp[0][0] = 1
    
    # Fill the dp array using dynamic programming
    for i in range(1, N + 1):
        for j in range(N + 1):
            for k in range(1, i + 1):
                if i % k == 0 or k % i == 0:
                    dp[i][j] += dp[i - 1][j - 1]
    
    # Sum up the counts of all valid permutations
    count = sum(dp[N][1:])
    
    return count

# Test cases
print(countPermutations(2))  # Output: 2

Output
2

Time Complexity: O(n^3)

Space Complexity: O(n^2)

Article Tags :