Given two integers N and K, the task is to find the count of N-digit numbers such that the absolute difference of adjacent digits in the number is not greater than K.
Examples:
Input: N = 2, K = 1
Output: 26
Explanation: The numbers are 10, 11, 12, 21, 22, 23, 32, 33, 34, 43, 44, 45, 54, 55, 56, 65, 66, 67, 76, 77, 78, 87, 88, 89, 98, 99Input: N = 3, K = 2
Output: 188
Naive Approach
The simplest approach is to iterate over all N digit numbers and check for every number if the adjacent digits have an absolute difference less than or equal to K.
Time Complexity: O(10N * N)
Efficient Approach:
To optimize the above approach, we need to use a Dynamic Programming approach along with Range Update
- Initialize a DP[][] array where dp[i][j] stores the count of numbers having i digits and ending with j.
- Iterate the array from 2 to N and check if the last digit was j, then the allowed digits for this place are in the range (max(0, j-k), min(9, j+k)). Perform a range update on this range.
- Now use Prefix Sum to get the actual answer.
Below is the implementation of the above approach:
// C++ implementation of // the above approach #include <bits/stdc++.h> using namespace std;
// Function to return count // of N-digit numbers with // absolute difference of // adjacent digits not // exceeding K long long getCount( int n, int k)
{ // For 1-digit numbers,
// the count is 10
if (n == 1)
return 10;
long long dp[n + 1][11];
// dp[i][j] stores the number
// of such i-digit numbers
// ending in j
for ( int i = 0; i <= n; i++) {
for ( int j = 0; j < 11; j++)
dp[i][j] = 0;
}
// Initialize count for
// 1-digit numbers
for ( int i = 1; i <= 9; i++)
dp[1][i] = 1;
// Compute values for count of
// digits greater than 1
for ( int i = 2; i <= n; i++) {
for ( int j = 0; j <= 9; j++) {
// Find the range of allowed
// numbers if last digit is j
int l = max(0, j - k);
int r = min(9, j + k);
// Perform Range update
dp[i][l] += dp[i - 1][j];
dp[i][r + 1] -= dp[i - 1][j];
}
// Prefix sum to find actual
// values of i-digit numbers
// ending in j
for ( int j = 1; j <= 9; j++)
dp[i][j] += dp[i][j - 1];
}
// Stores the final answer
long long count = 0;
for ( int i = 0; i <= 9; i++)
count += dp[n][i];
return count;
} // Driver Code int main()
{ int N = 2, K = 1;
cout << getCount(N, K);
} |
// Java Program to implement // the above approach import java.util.*;
class GFG {
// Function to return count of such numbers
public static long getCount( int n, int k)
{
// For 1-digit numbers, the count
// is 10 irrespective of K
if (n == 1 )
return 10 ;
// dp[i][j] stores the number
// of such i-digit numbers
// ending in j
long dp[][]
= new long [n + 1 ][ 11 ];
// Initialize count for
// 1-digit numbers
for ( int i = 1 ; i <= 9 ; i++)
dp[ 1 ][i] = 1 ;
// Compute values for count of
// digits greater than 1
for ( int i = 2 ; i <= n; i++) {
for ( int j = 0 ; j <= 9 ; j++) {
// Find the range of allowed
// numbers if last digit is j
int l = Math.max( 0 , j - k);
int r = Math.min( 9 , j + k);
// Perform Range update
dp[i][l] += dp[i - 1 ][j];
dp[i][r + 1 ] -= dp[i - 1 ][j];
}
// Prefix sum to find actual values
// of i-digit numbers ending in j
for ( int j = 1 ; j <= 9 ; j++)
dp[i][j] += dp[i][j - 1 ];
}
// Stores the final answer
long count = 0 ;
for ( int i = 0 ; i <= 9 ; i++)
count += dp[n][i];
return count;
}
// Driver Code
public static void main(String[] args)
{
int n = 2 , k = 1 ;
System.out.println(getCount(n, k));
}
} |
# Python 3 Program to implement # the above approach # Function to return count # of N-digit numbers with # absolute difference of # adjacent digits not # exceeding K def getCount(n, k):
# For 1-digit numbers, the
# count is 10
if n = = 1 :
return 10
# dp[i][j] stores the count of
# i-digit numbers ending with j
dp = [[ 0 for x in range ( 11 )]
for y in range (n + 1 )];
# Initialize count for
# 1-digit numbers
for i in range ( 1 , 10 ):
dp[ 1 ][i] = 1
# Compute values for count
# of digits greater than 1
for i in range ( 2 , n + 1 ):
for j in range ( 0 , 10 ):
# Find the range of allowed
# numbers if last digit is j
l = max ( 0 , j - k)
r = min ( 9 , j + k)
# Perform Range update
dp[i][l] = dp[i][l] + dp[i - 1 ][j]
dp[i][r + 1 ] = dp[i][r + 1 ] - dp[i - 1 ][j]
# Prefix sum to find count of
# of i-digit numbers ending with j
for j in range ( 1 , 10 ):
dp[i][j] = dp[i][j] + dp[i][j - 1 ]
# Stores the final answer
count = 0
for i in range ( 0 , 10 ):
count = count + dp[n][i]
return count
# Driver Code n, k = 2 , 1
print (getCount(n, k))
|
// C# Program to implement // the above approach using System;
class GFG {
// Function to return the
// count of N-digit numbers
// with absolute difference of
// adjacent digits not exceeding K
static long getCount( int n, int k)
{
// For 1-digit numbers, the
// count is 10
if (n == 1)
return 10;
// dp[i][j] stores the count of
// i-digit numbers ending with j
long [, ] dp = new long [n + 1, 11];
// Initialize count for
// 1-digit numbers
for ( int i = 1; i <= 9; i++)
dp[1, i] = 1;
// Compute values for count of
// digits greater than 1
for ( int i = 2; i <= n; i++) {
for ( int j = 0; j <= 9; j++) {
// Find the range of allowed
// numbers with last digit j
int l = Math.Max(0, j - k);
int r = Math.Min(9, j + k);
// Perform Range update
dp[i, l] += dp[i - 1, j];
dp[i, r + 1] -= dp[i - 1, j];
}
// Prefix sum to count i-digit
// numbers ending in j
for ( int j = 1; j <= 9; j++)
dp[i, j] += dp[i, j - 1];
}
// Stores the final answer
long count = 0;
for ( int i = 0; i <= 9; i++)
count += dp[n, i];
return count;
}
// Driver Code
public static void Main()
{
int n = 2, k = 1;
Console.WriteLine(getCount(n, k));
}
} |
26
Time Complexity: O(N)
Auxiliary Space: O(N)