Construct the Rooted tree by using start and finish time of its DFS traversal

Given start and finish times of DFS traversal of N vertices that are available in a Rooted tree, the task is to construct the tree (Print the Parent of each node).
Parent of the root node is 0.

Examples:

Input: Start[] = {2, 4, 1, 0, 3}, End[] = {3, 5, 4, 5, 4}
Output: 3 4 4 0 3
Given Tree is -:
                      4(0, 5)
                    /   \
              (1, 4)3     2(4, 5)
                 /  \    
           (2, 3)1    5(3, 4)
The root will always have start time = 0
processing a node takes 1 unit time but backtracking 
does not consume time, so the finishing time 
of two nodes can be the same.

Input: Start[] = {4, 3, 2, 1, 0}, End[] = {5, 5, 3, 3, 5}
Output: 2 5 4 5 0

Approach:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
int N;
  
// Function to find the parent of each node.
vector<int> Restore_Tree(int Start[], int End[])
{
  
    // Storing index of vertex with starting
    // time Equal to i
    vector<int> Identity(N,0);
  
  
    for (int i = 0; i < N; i++)
    {
        Identity[Start[i]] = i;
    }
  
    // Parent array
    vector<int> parent(N,-1);
    int curr_parent = Identity[0];
  
    for (int j = 1; j < N; j++)
    {
  
        // Find the vertex with starting time j
        int child = Identity[j];
  
        // If end time of this child is greater than
        // (start time + 1), then we traverse down and
        // store curr_parent as the parent of child
        if (End[child] - j > 1)
        {
            parent[child] = curr_parent;
            curr_parent = child;
        }
  
        // Find the parent of current vertex
        // over iterating on the finish time
        else
            parent[child] = curr_parent;
  
        // Backtracking takes zero time
        while (End[child]== End[parent[child]])
        {
            child = parent[child];
            curr_parent = parent[child];
            if (curr_parent == Identity[0])
                break;
        }
    }
    for (int i = 0; i < N; i++)
        parent[i] += 1;
  
    // Return the parent array
    return parent;
}
  
// Driver Code
int main()
{
    N = 5;
  
    // Start and End time of DFS
    int Start[] = {2, 4, 1, 0, 3};
    int End[] = {3, 5, 4, 5, 4};
    vector<int> a = Restore_Tree(Start, End);
  
    for(int ans:a)
        cout << ans << " ";
  
    return 0;
}
  
// This code is contributed by mohit kumar 29
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implemenation of above approach
import java.util.Arrays;
  
class GFG 
{
      
static int N = 5;
  
// Function to find the parent of each node.
static int[] Restore_Tree(int []S, int []End)
{
  
    // Storing index of vertex with starting
    // time Equal to i
    int []Identity = new int[N]; 
  
    for(int i = 0; i < N; i++)
        Identity[S[i]] = i;
  
    // Parent array
    int []parent = new int[N];
    Arrays.fill(parent,-1);
    int curr_parent = Identity[0];
      
    for(int j = 1; j < N; j++)
    {
  
        // Find the vertex with starting time j
        int child = Identity[j];
  
        // If end time of this child is greater than 
        // (start time + 1), then we traverse down and 
        // store curr_parent as the parent of child
        if(End[child] - j > 1)
        {
            parent[child] = curr_parent;
            curr_parent = child;
        }
          
        // Find the parent of current vertex
        // over iterating on the finish time
        else
            parent[child] = curr_parent;
  
            // Backtracking takes zero time
            while(parent[child]>-1 && End[child] == End[parent[child]])
            {
                child = parent[child];
                curr_parent = parent[child];
                if(curr_parent == Identity[0])
                    break;
            }
        }
    }
    for(int i = 0; i < N; i++)
        parent[i] += 1;
  
    // Return the parent array
    return parent;
}
  
// Driver Code 
public static void main(String[] args) 
{
    // Start and End time of DFS
    int []Start = {2, 4, 1, 0, 3};
    int []End = {3, 5, 4, 5, 4};
    int ans[] =Restore_Tree(Start, End);
    for(int a:ans)
        System.out.print(a + " ");
}
}
  
// This code has been contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python implementation of the above approach
   
# Function to find the parent of each node.
def Restore_Tree(S, E):
   
    # Storing index of vertex with starting
    # time Equal to i
    Identity = N*[0]  
  
    for i in range(N):
        Identity[Start[i]] = i
   
    # Parent array
    parent = N*[-1]
    curr_parent = Identity[0]
      
    for j in range(1, N):
  
        # Find the vertex with starting time j
        child = Identity[j]
  
        # If end time of this child is greater than 
        # (start time + 1), then we traverse down and 
        # store curr_parent as the parent of child
        if End[child] - j > 1:
            parent[child] = curr_parent
            curr_parent = child
  
        # Find the parent of current vertex
        # over iterating on the finish time
        else:     
            parent[child] = curr_parent
  
            # Backtracking takes zero time
            while End[child]== End[parent[child]]:
                child = parent[child]
                curr_parent = parent[child]
                if curr_parent == Identity[0]:
                    break
    for i in range(N):
        parent[i]+= 1
   
    # Return the parent array
    return parent
   
# Driver Code 
if __name__=="__main__":
    N = 5
   
    # Start and End time of DFS
    Start = [2, 4, 1, 0, 3]
    End = [3, 5, 4, 5, 4]
    print(*Restore_Tree(Start, End))
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
      
class GFG 
{
      
static int N = 5;
  
// Function to find the parent of each node.
static int[] Restore_Tree(int []S, int []End)
{
  
    // Storing index of vertex with starting
    // time Equal to i
    int []Identity = new int[N]; 
  
    for(int i = 0; i < N; i++)
        Identity[S[i]] = i;
  
    // Parent array
    int []parent = new int[N];
    for(int i = 0; i < N; i++)
        parent[i]=-1;
    int curr_parent = Identity[0];
      
    for(int j = 1; j < N; j++)
    {
  
        // Find the vertex with starting time j
        int child = Identity[j];
  
        // If end time of this child is greater than 
        // (start time + 1), then we traverse down and 
        // store curr_parent as the parent of child
        if(End[child] - j > 1)
        {
            parent[child] = curr_parent;
            curr_parent = child;
        }
          
        // Find the parent of current vertex
        // over iterating on the finish time
        else
        
            parent[child] = curr_parent;
  
            // Backtracking takes zero time
            while(parent[child]>-1 && End[child] == End[parent[child]])
            {
                child = parent[child];
                curr_parent = parent[child];
                if(curr_parent == Identity[0])
                    break;
            }
        }
    }
    for(int i = 0; i < N; i++)
        parent[i] += 1;
  
    // Return the parent array
    return parent;
}
  
// Driver Code 
public static void Main(String[] args) 
{
    // Start and End time of DFS
    int []Start = {2, 4, 1, 0, 3};
    int []End = {3, 5, 4, 5, 4};
    int []ans =Restore_Tree(Start, End);
    foreach(int a in ans)
        Console.Write(a + " ");
}
}
  
/* This code contributed by PrinciRaj1992 */
chevron_right

Output:
3 4 4 0 3

Time Complexity : O(N)
where N is the number of nodes in the tree.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :