Check if a pair with given absolute difference exists in a Matrix

Given an N×M matrix and a difference K. The task is to check if a pair with the given absolute difference exists in the matrix or not.
Examples

Input: mat[N][M] = {{1, 2, 3, 4},
                    {5, 6, 7, 8},
                    {9, 10, 11, 12},
                    {13, 14, 15, 100}};
       K = 85
Output: YES

Input: mat[N][M] = {{1, 2, 3, 4},
                   {5, 6, 7, 8}};
       K = 150
Output: NO

Approach:  

Below is the implementation of the above approach: 
 

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP code to check for pair with given
// difference exists in the matrix or not
 
#include <bits/stdc++.h>
using namespace std;
 
#define N 4
#define M 4
 
// Function to check if a pair with given
// difference exists in the matrix
bool isPairWithDiff(int mat[N][M], int k)
{
    unordered_set <int> ump ;
    
    // Loop to iterate over the matrix
    for( int i = 0 ; i < N  ; i++ )
    {
        for( int j =0 ; j < M ; j++ )
        {
            if( mat[i][j] > k )
            {
                int m = mat[i][j] - k ;
                 
                if( ump.find(m) != ump.end() )
                {
                    return true ;
                }
            }
            else
            {
                int m = k - mat[i][j] ;
                 
                if( ump.find(m) != ump.end() )
                {
                    return true ;
                }
            }
            ump.insert(mat[i][j]);
        }
    }
  return false;
}
 
// Driver Code
int main()
{
    // Input matrix
    int mat[N][M] ={ { 5, 2, 3, 4 },
                    { 5, 6, 7, 8 },
                    { 9, 10, 11, 12 },
                    { 13, 14, 15, 100 } };
 
    // Given difference
    int k = 85;
 
    if (isPairWithDiff(mat, k))
        cout << "YES" << endl;    
    else
        cout << "NO" << endl;
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to check for pair with given
// difference exists in the matrix or not
import java.util.*;
 
class GFG
{
 
static final int N = 4;
static final int M = 4;
 
// Function to check if a pair with given
// difference exists in the matrix
static boolean isPairWithDiff(int mat[][], int k)
{
    // Store elements in a hash
    HashSet<Integer> s = new HashSet<Integer>();
   
    // Loop to iterate over the
    // elements of the matrix
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++) {
            if( mat[i][j] > k )
            {
                int m = mat[i][j] - k ;
                 
                if(s.contains(m))
                {
                    return true ;
                }
            }
            else
            {
                int m = k - mat[i][j] ;
                 
                if(s.contains(m))
                {
                    return true ;
                }
            }
            s.add(mat[i][j]);    
        }
    
             
    return false;
}
 
// Driver Code
public static void main(String[] args)
{
    // Input matrix
    int mat[][] = { { 5, 2, 3, 4 },
                    { 5, 6, 7, 8 },
                    { 9, 10, 11, 12 },
                    { 13, 14, 15, 100 } };
 
    // Given difference
    int k = 85;
 
    System.out.println(
      isPairWithDiff(mat, k) == true ?
      "YES" : "NO");
}
}
 
// This code contributed by Rajput-Ji
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to check for pairs
# with given difference exits in the
# matrix or not
N = 4
M = 4
 
# Function to check if a
# pair with given
# difference exist in the matrix
def isPairWithDiff(mat, k):
     
    # Store elements in a hash
    s = set()
     
    # Store elements in dict
    for i in range(N):
        for j in range(M):
            if mat[i][j] > k:
                m = mat[i][j] - k
                if m in s:
                    return True
            else:
                m = k - mat[i][j]
                if m in s:
                    return True
            s.add(mat[i][j])
     
    return False       
     
# Driver Code
n, m = 4, 4
mat = [[5, 2, 3, 4],
       [5, 6, 7, 8],
       [9, 10, 11, 12],
       [13, 14, 15, 100]]
     
# given difference
k = 85
 
if isPairWithDiff(mat, k):
    print("Yes")
else:
    print("No")
 
# This code is contributed by
# Mohit kumar 29 (IIIT gwalior)
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to check for pair with given
// difference exists in the matrix or not
using System;
using System.Collections.Generic;
     
class GFG
{
 
static int N = 4;
static int M = 4;
 
// Function to check if a pair with given
// difference exists in the matrix
static Boolean isPairWithDiff(
             int [,]mat, int k)
{
    // Store elements in a hash
    HashSet<int> s = new HashSet<int>();
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
            if( mat[i, j] > k )
            {
                int m = mat[i, j] - k ;
                 
                if(s.Contains(m))
                {
                    return true ;
                }
            }
            else
            {
                int m = k - mat[i, j];
                 
                if(s.Contains(m))
                {
                    return true ;
                }
            }
            s.Add(mat[i, j]);  
        }
    }
             
    return false;
}
 
// Driver Code
public static void Main(String[] args)
{
    // Input matrix
    int [,]mat = { { 5, 2, 3, 4 },
                    { 5, 6, 7, 8 },
                    { 9, 10, 11, 12 },
                    { 13, 14, 15, 100 } };
 
    // Given difference
    int k = 85;
 
    Console.WriteLine(
      isPairWithDiff(mat, k) == true ?
      "YES" : "NO");
}
}
 
/* This code contributed by PrinciRaj1992 */
chevron_right

Output
YES

Time Complexity: O(N*M)
Auxiliary Space: O(N*M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :