Sum of the first N Prime numbers
Last Updated :
11 Jul, 2025
Given an integer 'n', the task is to find the sum of first 'n' prime numbers.
First few prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, ......
Examples:
Input: N = 4
Output: 17
2, 3, 5, 7 are first 4 prime numbers so their sum is equal to 17
Input: N = 40
Output: 3087
Approach:
- Create a sieve which will help us to identify if the number is prime or not in O(1) time.
- Run a loop starting from 1 until and unless we find n prime numbers.
- Add all the prime numbers and neglect those which are not prime.
- Then, display the sum of 1st N prime numbers.
Below is the implementation of the above solution
C++
// C++ implementation of above solution
#include <bits/stdc++.h>
using namespace std;
#define MAX 10000
// Create a boolean array "prime[0..n]" and initialize
// all entries it as true. A value in prime[i] will
// finally be false if i is Not a prime, else true.
bool prime[MAX + 1];
void SieveOfEratosthenes()
{
memset(prime, true, sizeof(prime));
prime[1] = false;
for (int p = 2; p * p <= MAX; p++) {
// If prime[p] is not changed, then it is a prime
if (prime[p] == true) {
// Set all multiples of p to non-prime
for (int i = p * 2; i <= MAX; i += p)
prime[i] = false;
}
}
}
// find the sum of 1st N prime numbers
int solve(int n)
{
// count of prime numbers
int count = 0, num = 1;
// sum of prime numbers
long long int sum = 0;
while (count < n) {
// if the number is prime add it
if (prime[num]) {
sum += num;
// increase the count
count++;
}
// get to next number
num++;
}
return sum;
}
// Driver code
int main()
{
// create the sieve
SieveOfEratosthenes();
int n = 4;
// find the value of 1st n prime numbers
cout << "Sum of 1st N prime numbers are :" << solve(n);
return 0;
}
Java
// Java implementation of above solution
public class Improve {
final static double MAX = 10000 ;
// Create a boolean array "prime[0..n]" and initialize
// all entries it as true. A value in prime[i] will
// finally be false if i is Not a prime, else true.
static boolean prime[] = new boolean [(int) (MAX + 1.0)] ;
static void SieveOfEratosthenes()
{
for(int i = 0; i <= MAX; i++)
prime[i] = true ;
prime[1] = false;
for (int p = 2; p * p <= MAX; p++) {
// If prime[p] is not changed, then it is a prime
if (prime[p] == true) {
// Set all multiples of p to non-prime
for (int i = p * 2; i <= MAX; i += p)
prime[i] = false;
}
}
}
// find the sum of 1st N prime numbers
static int solve(int n)
{
// count of prime numbers
int count = 0, num = 1;
// sum of prime numbers
long sum = 0;
while (count < n) {
// if the number is prime add it
if (prime[num]) {
sum += num;
// increase the count
count++;
}
// get to next number
num++;
}
return (int) sum;
}
// Driver code
public static void main(String args[])
{
// create the sieve
SieveOfEratosthenes();
int n = 4;
// find the value of 1st n prime numbers
System.out.println("Sum of 1st N prime numbers are :" + solve(n));
}
// This Code is contributed by ANKITRAI1
}
Python
# Python3 implementation of
# above solution
MAX = 10000
# Create a boolean array "prime[0..n]"
# and initialize all entries it as true.
# A value in prime[i] will finally be
# false if i is Not a prime, else true.
prime = [True for i in range(MAX + 1)]
def SieveOfEratosthenes():
prime[1] = False
for p in range(2, MAX + 1):
# If prime[p] is not changed,
# then it is a prime
if (prime[p] == True):
# Set all multiples of
# p to non-prime
i = p * 2
while(i <= MAX):
prime[i] = False
i = i + p
# find the sum of 1st
# N prime numbers
def solve( n):
# count of prime numbers
count = 0
num = 1
# sum of prime numbers
total = 0
while (count < n):
# if the number is prime add it
if ( prime[num] ):
total = total + num
# increase the count
count = count + 1
# get to next number
num = num + 1
return total
# Driver code
# create the sieve
SieveOfEratosthenes()
n = 4
# find the value of 1st
# n prime numbers
print("Sum of 1st N prime " +
"numbers are :", solve(n))
# This code is contributed by ash264
C#
//C# implementation of above solution
using System;
public class GFG{
static double MAX = 10000 ;
// Create a boolean array "prime[0..n]" and initialize
// all entries it as true. A value in prime[i] will
// finally be false if i is Not a prime, else true.
static bool []prime = new bool [(int)(MAX + 1.0)] ;
static void SieveOfEratosthenes()
{
for(int i = 0; i <= MAX; i++)
prime[i] = true ;
prime[1] = false;
for (int p = 2; p * p <= MAX; p++) {
// If prime[p] is not changed, then it is a prime
if (prime[p] == true) {
// Set all multiples of p to non-prime
for (int i = p * 2; i <= MAX; i += p)
prime[i] = false;
}
}
}
// find the sum of 1st N prime numbers
static int solve(int n)
{
// count of prime numbers
int count = 0, num = 1;
// sum of prime numbers
long sum = 0;
while (count < n) {
// if the number is prime add it
if (prime[num]) {
sum += num;
// increase the count
count++;
}
// get to next number
num++;
}
return (int) sum;
}
// Driver code
static public void Main (){
// create the sieve
SieveOfEratosthenes();
int n = 4;
// find the value of 1st n prime numbers
Console.WriteLine("Sum of 1st N prime numbers are :" + solve(n));
}
// This Code is contributed by ajit.
}
JavaScript
<script>
// javascript implementation of above solution
var MAX = 10000 ;
// Create a boolean array "prime[0..n]" and initialize
// all entries it as true. A value in prime[i] will
// finally be false if i is Not a prime, else true.
var prime = Array.from({length: parseInt( (MAX + 1.0))}, (_, i) => false);
function SieveOfEratosthenes()
{
for(i = 0; i <= MAX; i++)
prime[i] = true ;
prime[1] = false;
for (p = 2; p * p <= MAX; p++) {
// If prime[p] is not changed, then it is a prime
if (prime[p] == true) {
// Set all multiples of p to non-prime
for (i = p * 2; i <= MAX; i += p)
prime[i] = false;
}
}
}
// find the sum of 1st N prime numbers
function solve(n)
{
// count of prime numbers
var count = 0, num = 1;
// sum of prime numbers
var sum = 0;
while (count < n) {
// if the number is prime add it
if (prime[num]) {
sum += num;
// increase the count
count++;
}
// get to next number
num++;
}
return parseInt( sum);
}
// Driver code
//create the sieve
SieveOfEratosthenes();
var n = 4;
// find the value of 1st n prime numbers
document.write("Sum of 1st N prime numbers are :" + solve(n));
// This code is contributed by 29AjayKumar
</script>
OutputSum of 1st N prime numbers are :17
Note(For competitive programming): In a problem which contains a large number of queries, a vector can be used to store all the prime numbers in the range of 10^8, this will take extra O(N) space. We can also use prefix array to store the sum of first N prime numbers in the range of 10^8.
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem