Possible two sets from first N natural numbers difference of sums as D
Last Updated :
12 Aug, 2022
Given N and D, find if it is possible to make two sets from first N natural numbers such that the difference between the sum of 2 sets(individually) is D.
Examples :
Input : 5 7
Output : yes
Explanation: Keeping 1 and 3 in one set,
and 2, 4 and 5 are in other set.
Sum of set 1 = 4
Sum of set 2 = 11
So, the difference D = 7
Which is the required difference
Input : 4 5
Output : no
Approach :
Let s1 and s2 be the two sets.
Here we know that
sum(s1) + sum(s2) = N*(N+1)/2 and
sum(s1) - sum(s2) = D
Adding above 2 equations, we get
2*sum(s1) = N*(N+1)/2 + D
If sum(S1) and sum(S2) are integers, then only we can split the first N natural numbers into two sets. For that N*(N+1)/2 + D must be an even number.
Implementation:
C++
// C++ program for implementing
// above approach
#include <bits/stdc++.h>
using namespace std;
// Function returns true if it is
// possible to split into two
// sets otherwise returns false
bool check(int N, int D)
{
int temp = (N * (N + 1)) / 2 + D;
return (temp % 2 == 0);
}
// Driver code
int main()
{
int N = 5;
int M = 7;
if (check(N, M))
cout << "yes";
else
cout << "no";
return 0;
}
C
// C program for implementing
// above approach
#include <stdio.h>
#include <stdbool.h>
// Function returns true if it is
// possible to split into two
// sets otherwise returns false
bool check(int N, int D)
{
int temp = (N * (N + 1)) / 2 + D;
return (temp % 2 == 0);
}
// Driver code
int main()
{
int N = 5;
int M = 7;
if (check(N, M))
printf("yes");
else
printf("no");
return 0;
}
// This code is contributed by kothavvsaakash.
Java
// Java program for implementing
// above approach
class GFG
{
// Function returns true if it is
// possible to split into two
// sets otherwise returns false
static boolean check(int N, int D)
{
int temp = (N * (N + 1)) / 2 + D;
return (temp % 2 == 0);
}
// Driver code
static public void main (String args[])
{
int N = 5;
int M = 7;
if (check(N, M))
System.out.println("yes");
else
System.out.println("no");
}
}
// This code is contributed by Smitha.
Python3
# Python program for implementing
# above approach
# Function returns true if it is
# possible to split into two
# sets otherwise returns false
def check(N, D):
temp = N * (N + 1) // 2 + D
return (bool(temp % 2 == 0))
# Driver code
N = 5
M = 7
if check(N, M):
print("yes")
else:
print("no")
# This code is contributed by Shrikant13.
C#
// C# program for implementing
// above approach
using System;
class GFG
{
// Function returns true if it is
// possible to split into two
// sets otherwise returns false
static bool check(int N, int D)
{
int temp = (N * (N + 1)) / 2 + D;
return (temp % 2 == 0);
}
// Driver code
static public void Main ()
{
int N = 5;
int M = 7;
if (check(N, M))
Console.Write("yes");
else
Console.Write("no");
}
}
// This code is contributed by Ajit.
PHP
<?php
// PHP program for implementing
// above approach
// Function returns true if it is
// possible to split into two
// sets otherwise returns false
function check($N, $D)
{
$temp = ($N * ($N + 1)) / 2 + $D;
return ($temp % 2 == 0);
}
// Driver code
$N = 5;
$M = 7;
if (check($N, $M))
echo("yes");
else
echo("no");
// This code is contributed by Ajit.
JavaScript
<script>
// javascript program for implementing
// above approach
// Function returns true if it is
// possible to split into two
// sets otherwise returns false
function check( N, D)
{
let temp = (N * (N + 1)) / 2 + D;
return (temp % 2 == 0);
}
// Driver code
let N = 5;
let M = 7;
if (check(N, M))
document.write( "yes");
else
document.write("no");
// This code contributed by aashish1995
</script>
Time Complexity: O(1), the code will run in a constant time.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem