Minimum possible value T such that at most D Partitions of the Array having at most sum T is possible
Last Updated :
15 Jul, 2025
Given an array arr[] consisting of N integers and an integer D, the task is to find the least integer T such that the entire array can be partitioned into at most D subarrays from the given array with sum atmost T.
Examples:
Input: D = 5, arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Output: 15
Explanation:
If T = 15, then 5 subarrays {{1, 2, 3, 4, 5}, {6, 7}, {8}, {9}, {10}}
Input: D = 2, arr[] = {1, 1, 1, 1, 1}
Output: 3
Explanation:
If T = 3, then the 2 partitions are {{1, 1, 1}, {1, 1}}
Naive Approach: The idea is to check for all possible values of T in the range [max(element), sum(element)] whether it is possible to have at most D partition.
Time Complexity: O( N*R )
Auxiliary Space: O(1)
Efficient Approach: The idea is to use Binary search to optimize the above approach. Follow the steps below to solve the problem:
- Consider T in the range R = [ max(element), sum(element) ].
- If median T can generate at most D partitions, then check for a median lesser than T.
- Otherwise, check for a median greater than the current median T.
- Return the possible value of T at the end.
Below is the implementation of the above approach:
C++
// C++ Program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to check if the array
// can be partitioned into atmost d
// subarray with sum atmost T
bool possible(int T, int arr[], int n, int d)
{
// Initial partition
int partition = 1;
// Current sum
int total = 0;
for (int i = 0; i < n; i++) {
total = total + arr[i];
// If current sum exceeds T
if (total > T) {
// Create a new partition
partition = partition + 1;
total = arr[i];
// If count of partitions
// exceed d
if (partition > d) {
return false;
}
}
}
return true;
}
// Function to find the minimum
// possible value of T
void calcT(int n, int d, int arr[])
{
// Stores the maximum and
// total sum of elements
int mx = -1, sum = 0;
for (int i = 0; i < n; i++) {
// Maximum element
mx = max(mx, arr[i]);
// Sum of all elements
sum = sum + arr[i];
}
int lb = mx;
int ub = sum;
while (lb < ub) {
// Calculate median T
int T_mid = lb + (ub - lb) / 2;
// If atmost D partitions possible
if (possible(T_mid, arr, n, d) == true) {
// Check for smaller T
ub = T_mid;
}
// Otherwise
else {
// Check for larger T
lb = T_mid + 1;
}
}
// Print the minimum T required
cout << lb << endl;
}
// Driver Code
int main()
{
int d = 2;
int arr[] = { 1, 1, 1, 1, 1 };
int n = sizeof arr / sizeof arr[0];
// Function call
calcT(n, d, arr);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
import java.io.*;
class GFG{
// Function to check if the array
// can be partitioned into atmost d
// subarray with sum atmost T
public static boolean possible(int T, int arr[],
int n, int d)
{
// Initial partition
int partition = 1;
// Current sum
int total = 0;
for(int i = 0; i < n; i++)
{
total = total + arr[i];
// If current sum exceeds T
if (total > T)
{
// Create a new partition
partition = partition + 1;
total = arr[i];
// If count of partitions
// exceed d
if (partition > d)
{
return false;
}
}
}
return true;
}
// Function to find the minimum
// possible value of T
public static void calcT(int n, int d,
int arr[])
{
// Stores the maximum and
// total sum of elements
int mx = -1, sum = 0;
for(int i = 0; i < n; i++)
{
// Maximum element
mx = Math.max(mx, arr[i]);
// Sum of all elements
sum = sum + arr[i];
}
int lb = mx;
int ub = sum;
while (lb < ub)
{
// Calculate median T
int T_mid = lb + (ub - lb) / 2;
// If atmost D partitions possible
if (possible(T_mid, arr, n, d) == true)
{
// Check for smaller T
ub = T_mid;
}
// Otherwise
else
{
// Check for larger T
lb = T_mid + 1;
}
}
// Print the minimum T required
System.out.println(lb);
}
// Driver code
public static void main(String args[])
{
int d = 2;
int arr[] = { 1, 1, 1, 1, 1 };
int n = arr.length;
// Function call
calcT(n, d, arr);
}
}
// This code is contributed by decoding
Python3
# Python3 program for the above approach
# Function to check if the array
# can be partitioned into atmost d
# subarray with sum atmost T
def possible(T, arr, n, d):
# Initial partition
partition = 1;
# Current sum
total = 0;
for i in range(n):
total = total + arr[i];
# If current sum exceeds T
if (total > T):
# Create a new partition
partition = partition + 1;
total = arr[i];
# If count of partitions
# exceed d
if (partition > d):
return False;
return True;
# Function to find the minimum
# possible value of T
def calcT(n, d, arr):
# Stores the maximum and
# total sum of elements
mx = -1; sum = 0;
for i in range(n):
# Maximum element
mx = max(mx, arr[i]);
# Sum of all elements
sum = sum + arr[i];
lb = mx;
ub = sum;
while (lb < ub):
# Calculate median T
T_mid = lb + (ub - lb) // 2;
# If atmost D partitions possible
if (possible(T_mid, arr, n, d) == True):
# Check for smaller T
ub = T_mid;
# Otherwise
else:
# Check for larger T
lb = T_mid + 1;
# Print the minimum T required
print(lb);
# Driver code
if __name__ == '__main__':
d = 2;
arr = [ 1, 1, 1, 1, 1 ];
n = len(arr);
# Function call
calcT(n, d, arr);
# This code is contributed by Rajput-Ji
C#
// C# program for the above approach
using System;
class GFG{
// Function to check if the array
// can be partitioned into atmost d
// subarray with sum atmost T
public static bool possible(int T, int []arr,
int n, int d)
{
// Initial partition
int partition = 1;
// Current sum
int total = 0;
for(int i = 0; i < n; i++)
{
total = total + arr[i];
// If current sum exceeds T
if (total > T)
{
// Create a new partition
partition = partition + 1;
total = arr[i];
// If count of partitions
// exceed d
if (partition > d)
{
return false;
}
}
}
return true;
}
// Function to find the minimum
// possible value of T
public static void calcT(int n, int d,
int []arr)
{
// Stores the maximum and
// total sum of elements
int mx = -1, sum = 0;
for(int i = 0; i < n; i++)
{
// Maximum element
mx = Math.Max(mx, arr[i]);
// Sum of all elements
sum = sum + arr[i];
}
int lb = mx;
int ub = sum;
while (lb < ub)
{
// Calculate median T
int T_mid = lb + (ub - lb) / 2;
// If atmost D partitions possible
if (possible(T_mid, arr, n, d) == true)
{
// Check for smaller T
ub = T_mid;
}
// Otherwise
else
{
// Check for larger T
lb = T_mid + 1;
}
}
// Print the minimum T required
Console.WriteLine(lb);
}
// Driver code
public static void Main(String []args)
{
int d = 2;
int []arr = { 1, 1, 1, 1, 1 };
int n = arr.Length;
// Function call
calcT(n, d, arr);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// JavaScript program for the
// above approach
// Function to check if the array
// can be partitioned into atmost d
// subarray with sum atmost T
function possible(T, arr,
n, d)
{
// Initial partition
let partition = 1;
// Current sum
let total = 0;
for(let i = 0; i < n; i++)
{
total = total + arr[i];
// If current sum exceeds T
if (total > T)
{
// Create a new partition
partition = partition + 1;
total = arr[i];
// If count of partitions
// exceed d
if (partition > d)
{
return false;
}
}
}
return true;
}
// Function to find the minimum
// possible value of T
function calcT(n, d, arr)
{
// Stores the maximum and
// total sum of elements
let mx = -1, sum = 0;
for(let i = 0; i < n; i++)
{
// Maximum element
mx = Math.max(mx, arr[i]);
// Sum of all elements
sum = sum + arr[i];
}
let lb = mx;
let ub = sum;
while (lb < ub)
{
// Calculate median T
let T_mid = lb + (ub - lb) / 2;
// If atmost D partitions possible
if (possible(T_mid, arr, n, d) == true)
{
// Check for smaller T
ub = T_mid;
}
// Otherwise
else
{
// Check for larger T
lb = T_mid + 1;
}
}
// Print the minimum T required
document.write(lb);
}
// Driver Code
let d = 2;
let arr = [ 1, 1, 1, 1, 1 ];
let n = arr.length;
// Function call
calcT(n, d, arr);
</script>
Time complexity: O( N*log(sum) )
Auxiliary Space: O(1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem