Generate all numbers up to N in Lexicographical Order
Last Updated :
15 Jul, 2025
Given an integer N, the task is to print all numbers up to N in Lexicographical order.
Examples:
Input: N = 15
Output:
1 10 11 12 13 14 15 2 3 4 5 6 7 8 9
Input: N = 19
Output:
1 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9
Approach:
In order to solve the problem, follow the steps below:
- Iterate from 1 to N and store all the numbers in the form of strings.
- Sort the vector containing the strings.
Below is the implementation of the above approach:
C++
// C++ Program to implement the
// above approach
#include <bits/stdc++.h>
using namespace std;
// Function to print all the
// numbers up to n in
// lexicographical order
void lexNumbers(int n)
{
vector<string> s;
for (int i = 1; i <= n; i++) {
s.push_back(to_string(i));
}
sort(s.begin(), s.end());
vector<int> ans;
for (int i = 0; i < n; i++)
ans.push_back(stoi(s[i]));
for (int i = 0; i < n; i++)
cout << ans[i] << " ";
}
// Driver Program
int main()
{
int n = 15;
lexNumbers(n);
return 0;
}
Java
// Java Program to implement the
// above approach
import java.util.*;
class GFG{
// Function to print all the
// numbers up to n in
// lexicographical order
static void lexNumbers(int n)
{
Vector<String> s = new Vector<String>();
for (int i = 1; i <= n; i++)
{
s.add(String.valueOf(i));
}
Collections.sort(s);
Vector<Integer> ans = new Vector<Integer>();
for (int i = 0; i < n; i++)
ans.add(Integer.valueOf(s.get(i)));
for (int i = 0; i < n; i++)
System.out.print(ans.get(i) + " ");
}
// Driver Program
public static void main(String[] args)
{
int n = 15;
lexNumbers(n);
}
}
// This code is contributed by sapnasingh4991
Python3
# Python3 program to implement
# above approach
# Function to print all the
# numbers up to n in
# lexicographical order
def lexNumbers(n):
s = []
for i in range(1, n + 1):
s.append(str(i))
s.sort()
ans = []
for i in range(n):
ans.append(int(s[i]))
for i in range(n):
print(ans[i], end = ' ')
# Driver Code
if __name__ == "__main__":
n = 15
lexNumbers(n)
# This code is contributed by Ediga_Manisha
C#
// C# program to implement the
// above approach
using System;
using System.Collections.Generic;
class GFG{
// Function to print all the
// numbers up to n in
// lexicographical order
static void lexNumbers(int n)
{
List<String> s = new List<String>();
for(int i = 1; i <= n; i++)
{
s.Add(String.Join("", i));
}
s.Sort();
List<int> ans = new List<int>();
for(int i = 0; i < n; i++)
ans.Add(Int32.Parse(s[i]));
for(int i = 0; i < n; i++)
Console.Write(ans[i] + " ");
}
// Driver code
public static void Main(String[] args)
{
int n = 15;
lexNumbers(n);
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// Javascript Program to implement the
// above approach
// Function to print all the
// numbers up to n in
// lexicographical order
function lexNumbers(n)
{
let s = [];
for (let i = 1; i <= n; i++)
{
s.push(i.toString());
}
s.sort();
let ans = [];
for (let i = 0; i < n; i++)
ans.push(parseInt(s[i]));
for (let i = 0; i < n; i++)
document.write(ans[i] + " ");
}
// Driver Program
let n = 15;
lexNumbers(n);
// This code is contributed by avanitrachhadiya2155
</script>
Output1 10 11 12 13 14 15 2 3 4 5 6 7 8 9
Time Complexity: O(N log N) // time complexity of sort function is NlogN
Space Complexity: O(N) // because an extra vector of string s is used
Another Approach:
- Using DFS: Always multiply temp by 10 till temp * 10 is greater than n
- Increment temp by 1 when the last digit of temp is not equal to 9
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
void dfs(int temp, int n, vector<int> &sol);
void lexNumbers(int n)
{
vector<int> sol;
dfs(1, n, sol);
cout << "[" << sol[0];
for (int i = 1; i < sol.size(); i++)
cout << ", "<< sol[i];
cout << "]";
}
void dfs(int temp, int n, vector<int> &sol)
{
if (temp > n)
return;
sol.push_back(temp);
dfs(temp * 10, n, sol);
if (temp % 10 != 9)
dfs(temp + 1, n, sol);
}
int main()
{
int n = 15;
lexNumbers(n);
return 0;
}
// This Code is contributed by ShubhamSingh10
Java
// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG {
public static void lexNumbers(int n)
{
List<Integer> sol = new ArrayList<>();
dfs(1, n, sol);
System.out.println(sol);
}
public static void dfs(int temp, int n,
List<Integer> sol)
{
if (temp > n)
return;
sol.add(temp);
dfs(temp * 10, n, sol);
if (temp % 10 != 9)
dfs(temp + 1, n, sol);
}
public static void main(String[] args)
{
int n = 15;
lexNumbers(n);
}
}
Python3
# Python program for the above approach
def lexNumbers(n):
sol = []
dfs(1, n, sol)
print("[", sol[0], end= "", sep ="")
for i in range(1,n):
print(", ", sol[i], end= "", sep ="")
print("]")
def dfs(temp, n, sol):
if (temp > n):
return
sol.append(temp)
dfs(temp * 10, n, sol)
if (temp % 10 != 9):
dfs(temp + 1, n, sol)
n = 15
lexNumbers(n)
# This Code is contributed by ShubhamSingh10
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG{
public static void lexNumbers(int n)
{
List<int> sol = new List<int>();
dfs(1, n, sol);
Console.WriteLine("[" + string.Join(", ", sol) + "]");
}
public static void dfs(int temp, int n,
List<int> sol)
{
if (temp > n)
return;
sol.Add(temp);
dfs(temp * 10, n, sol);
if (temp % 10 != 9)
dfs(temp + 1, n, sol);
}
// Driver code
public static void Main()
{
int n = 15;
lexNumbers(n);
}
}
// This code is contributed by shubhamsingh10
JavaScript
<script>
// JavaScript program for the above approach
function lexNumbers(n)
{
var sol = [];
dfs(1, n, sol);
document.write("["+ sol[0]);
for (var i = 1; i < sol.length; i++)
document.write(", "+ sol[i]);
document.write("]");
}
function dfs(temp, n, sol)
{
if (temp > n)
return;
sol.push(temp);
dfs(temp * 10, n, sol);
if (temp % 10 != 9)
dfs(temp + 1, n, sol);
}
var n = 15;
lexNumbers(n);
// This Code is contributed by ShubhamSingh10
</script>
Output[1, 10, 11, 12, 13, 14, 15, 2, 3, 4, 5, 6, 7, 8, 9]
Time Complexity: O(N)
Auxiliary Space: O (1)
When There is a Range:-
Given two integers L and R, the task is to print all numbers in the range of L to R (inclusively) in Lexicographical Order.
Examples:
Input: L = 9 , R = 21
Output:
10 11 12 13 14 15 16 17 18 19 20 21 9
Input: L = 1 , R= 13
Output:
1 10 11 12 13 2 3 4 5 6 7 8 9
Approach:
In order to solve the problem, follow the steps below:
- Iterate from L to R ( inclusively ) and store all the numbers in the form of strings.
- Sort the vector containing the strings.
Below is the implementation of the above approach :
C++
// C++ program to implement the
// above approach
#include <bits/stdc++.h>
using namespace std;
// Function to print all the
// numbers form l to r in
// lexicographical order
void lexNumbers(int l, int r)
{
vector<string> s;
for(int i = l; i <= r; i++)
{
s.push_back(to_string(i));
}
sort(s.begin(),s.end());
vector<int> ans;
for(int i = 0; i < s.size(); i++)
ans.push_back(stoi(s[i]));
for(int i = 0; i < s.size(); i++)
cout << ans[i] << " ";
}
// Driver code
int main()
{
int l = 9;
int r = 21;
lexNumbers(l, r);
}
// This code is contributed by ajaykr00kj
Java
// Java Program to implement the
// above approach
import java.util.*;
class GFG {
// Function to print all the
// numbers form l to r in
// lexicographical order
static void lexNumbers(int l, int r)
{
Vector<String> s = new Vector<String>();
for (int i = l; i <= r; i++) {
s.add(String.valueOf(i));
}
Collections.sort(s);
Vector<Integer> ans = new Vector<Integer>();
for (int i = 0; i < s.size(); i++)
ans.add(Integer.valueOf(s.get(i)));
for (int i = 0; i < s.size(); i++)
System.out.print(ans.get(i) + " ");
}
// Driver Program
public static void main(String[] args)
{
int l = 9;
int r = 21;
lexNumbers(l, r);
}
}
Python3
# Python 3 program to implement
# the above approach
# Function to print all the
# numbers form l to r in
# lexicographical order
def lexNumbers(l, r):
s = []
for i in range(l, r + 1):
s.append(str(i))
s.sort()
ans = []
for i in range(len(s)):
ans.append(int(s[i]))
for i in range(len(s)):
print(ans[i], end = " ")
# Driver code
if __name__ == "__main__":
l = 9
r = 21
lexNumbers(l, r)
# This code is contributed by Chitranayal
C#
// C# program to implement the
// above approach
using System;
using System.Collections.Generic;
class GFG
{
// Function to print all the
// numbers form l to r in
// lexicographical order
static void lexNumbers(int l, int r)
{
List<String> s = new List<String>();
for (int i = l; i <= r; i++)
{
s.Add(String.Join("", i));
}
s.Sort();
List<int> ans = new List<int>();
for (int i = 0; i < s.Count; i++)
ans.Add(Int32.Parse(s[i]));
for (int i = 0; i < s.Count; i++)
Console.Write(ans[i] + " ");
}
// Driver Program
static public void Main()
{
int l = 9;
int r = 21;
lexNumbers(l, r);
}
}
// This code is contributed by Dharanendra L V
JavaScript
<script>
// Javascript Program to implement the
// above approach
// Function to print all the
// numbers form l to r in
// lexicographical order
function lexNumbers(l,r)
{
let s = [];
for (let i = l; i <= r; i++) {
s.push((i).toString());
}
s.sort();
let ans = [];
for (let i = 0; i < s.length; i++)
ans.push(parseInt(s[i]));
for (let i = 0; i < s.length; i++)
document.write(ans[i] + " ");
}
// Driver Program
let l = 9;
let r = 21;
lexNumbers(l, r);
// This code is contributed by rag2127
</script>
Output10 11 12 13 14 15 16 17 18 19 20 21 9
Time Complexity: O(N*logN)
Auxiliary Space: O (1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem