Find the Sum of the series 1/2 - 2/3 + 3/4 - 4/5 + ... till N terms
Last Updated :
07 Jan, 2024
Given a number N, the task is to find the sum of the below series till N terms.
\frac{1}{2} - \frac{2}{3} + \frac{3}{4} - \frac{4}{5} + ...
Examples:
Input: N = 6
Output: -0.240476
Input: N = 10
Output: -0.263456
Approach: From the given series, find the formula for Nth term:
1st term = 1/2
2nd term = - 2/3
3rd term = 3/4
4th term = - 4/5
.
.
Nthe term = ((-1)N) * (N / (N + 1))
Therefore:
Nth term of the series
Then iterate over numbers in the range [1, N] to find all the terms using the above formula and compute their sum.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the sum of series
void printSeriesSum(int N)
{
double sum = 0;
for (int i = 1; i <= N; i++) {
// Generate the ith term and
// add it to the sum if i is
// even and subtract if i is
// odd
if (i & 1) {
sum += (double)i / (i + 1);
}
else {
sum -= (double)i / (i + 1);
}
}
// Print the sum
cout << sum << endl;
}
// Driver Code
int main()
{
int N = 10;
printSeriesSum(N);
return 0;
}
Java
// Java program for the above approach
class GFG{
// Function to find the sum of series
static void printSeriesSum(int N)
{
double sum = 0;
for (int i = 1; i <= N; i++) {
// Generate the ith term and
// add it to the sum if i is
// even and subtract if i is
// odd
if (i % 2 == 1) {
sum += (double)i / (i + 1);
}
else {
sum -= (double)i / (i + 1);
}
}
// Print the sum
System.out.print(sum +"\n");
}
// Driver Code
public static void main(String[] args)
{
int N = 10;
printSeriesSum(N);
}
}
// This code is contributed by 29AjayKumar
Python3
# Python3 program for the above approach
# Function to find the sum of series
def printSeriesSum(N) :
sum = 0;
for i in range(1, N + 1) :
# Generate the ith term and
# add it to the sum if i is
# even and subtract if i is
# odd
if (i & 1) :
sum += i / (i + 1);
else :
sum -= i / (i + 1);
# Print the sum
print(sum);
# Driver Code
if __name__ == "__main__" :
N = 10;
printSeriesSum(N);
# This code is contributed by Yash_R
C#
// C# program for the above approach
using System;
class GFG {
// Function to find the sum of series
static void printSeriesSum(int N)
{
double sum = 0;
for (int i = 1; i <= N; i++) {
// Generate the ith term and
// add it to the sum if i is
// even and subtract if i is
// odd
if ((i & 1)==0) {
sum += (double)i / (i + 1);
}
else {
sum -= (double)i / (i + 1);
}
}
// Print the sum
Console.WriteLine(sum);
}
// Driver Code
public static void Main (string[] args)
{
int N = 10;
printSeriesSum(N);
}
}
// This code is contributed by shivanisinghss2110
JavaScript
<script>
// javascript program for the above approach
// Function to find the sum of series
function printSeriesSum( N)
{
let sum = 0;
for (let i = 1; i <= N; i++) {
// Generate the ith term and
// add it to the sum if i is
// even and subtract if i is
// odd
if (i & 1) {
sum += i / (i + 1);
}
else {
sum -= i / (i + 1);
}
}
// Print the sum
document.write( sum.toFixed(6) );
}
// Driver Code
let N = 10;
printSeriesSum(N);
// This code is contributed by todaysgaurav
</script>
Time complexity: O(n) for given input n
Auxiliary Space: O(1), since no extra space has been taken.
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem