Find the number of paths of length K in a directed graph
Last Updated :
12 Jul, 2025
Given a directed, unweighted graph with N vertices and an integer K. The task is to find the number of paths of length K for each pair of vertices (u, v). Paths don't have to be simple i.e. vertices and edges can be visited any number of times in a single path.
The graph is represented as adjacency matrix where the value G[i][j] = 1 indicates that there is an edge from vertex i to vertex j and G[i][j] = 0 indicates no edge from i to j.
Examples:
Input: K = 2,
Output:
1 2 2
0 1 0
0 0 1
Number of paths from 0 to 0 of length k is 1({0->0->0})
Number of paths from 0 to 1 of length k are 2({0->0->1}, {0->2->1})
Number of paths from 0 to 2 of length k are 2({0->0->2}, {0->1->2})
Number of paths from 1 to 1 of length k is 1({1->2->1})
Number of paths from 2 to 2 of length k is 1({2->1->2})
Input: K = 3,
Output:
1 0 0
0 1 0
0 0 1
Number of paths from 0 to 0 of length k is 1({0->1->2->0})
Number of paths from 1 to 1 of length k is 1({1->2->0->1})
Number of paths from 2 to 2 of length k is 1({2->1->0->2})
Prerequisite: Matrix exponentiation, Matrix multiplication
Approach: It is obvious that given adjacency matrix is the answer to the problem for the case k = 1. It contains the number of paths of length 1 between each pair of vertices.
Let's assume that the answer for some k is Matk and the answer for k + 1 is Matk + 1.
Matk + 1[i][j] = ?p = 1NMatk[i][p]*G[p][j]
It is easy to see that the formula computes nothing other than the product of the matrices Matk and G i.e. Matk + 1 = Matk * G
Thus, the solution of the problem can be represented as Matk = G * G * ... * G(k times) = Gk
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 3
// Function to multiply two matrices
void multiply(int a[][N], int b[][N], int res[][N])
{
int mul[N][N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
mul[i][j] = 0;
for (int k = 0; k < N; k++)
mul[i][j] += a[i][k] * b[k][j];
}
}
// Storing the multiplication result in res[][]
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
res[i][j] = mul[i][j];
}
// Function to compute G raised to the power n
void power(int G[N][N], int res[N][N], int n)
{
// Base condition
if (n == 1) {
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
res[i][j] = G[i][j];
return;
}
// Recursion call for first half
power(G, res, n / 2);
// Multiply two halves
multiply(res, res, res);
// If n is odd
if (n % 2 != 0)
multiply(res, G, res);
}
// Driver code
int main()
{
int G[N][N] = { { 1, 1, 1 },
{ 0, 0, 1 },
{ 0, 1, 0 } };
int k = 2, res[N][N];
power(G, res, k);
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
cout << res[i][j] << " ";
cout << "\n";
}
return 0;
}
// This Code is improved by cidacoder
Java
// Java implementation of the approach
class GFG
{
static int N = 3;
// Function to multiply two matrices
static void multiply(int a[][], int b[][], int res[][])
{
int [][]mul = new int[N][N];
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
mul[i][j] = 0;
for (int k = 0; k < N; k++)
mul[i][j] += a[i][k] * b[k][j];
}
}
// Storing the multiplication result in res[][]
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
res[i][j] = mul[i][j];
}
// Function to compute G raised to the power n
static void power(int G[][], int res[][], int n)
{
// Base condition
if (n == 1) {
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
res[i][j] = G[i][j];
return;
}
// Recursion call for first half
power(G, res, n / 2);
multiply(res, res, res);
// If n is odd
if (n % 2 != 0)
multiply(res, G, res);
}
// Driver code
public static void main(String[] args)
{
int G[][] = { { 1, 1, 1 },
{ 0, 0, 1 },
{ 0, 1, 0 } };
int k = 2;
int [][]res = new int[N][N];
power(G, res, k);
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
System.out.print(res[i][j] + " ");
System.out.println("");
}
}
}
// This code is contributed by 29AjayKumar
// This Code is improved by cidacoder
Python3
# Python3 implementation of the approach
import numpy as np
N = 3
# Function to multiply two matrices
def multiply(a, b, res) :
mul = np.zeros((N,N));
for i in range(N) :
for j in range(N) :
mul[i][j] = 0;
for k in range(N) :
mul[i][j] += a[i][k] * b[k][j];
# Storing the multiplication result in res[][]
for i in range(N) :
for j in range(N) :
res[i][j] = mul[i][j];
# Function to compute G raised to the power n
def power(G, res, n) :
# Base condition
if (n == 1) :
for i in range(N) :
for j in range(N) :
res[i][j] = G[i][j];
return;
# Recursion call for first half
power(G, res, n // 2);
# Multiply two halves
multiply(res, res, res);
# If n is odd
if (n % 2 != 0) :
multiply(res, G, res);
# Driver code
if __name__ == "__main__" :
G = [
[ 1, 1, 1 ],
[ 0, 0, 1 ],
[ 0, 1, 0 ]
];
k = 2;
res = np.zeros((N,N));
power(G, res, k);
for i in range(N) :
for j in range(N) :
print(res[i][j],end = " ");
print()
# This code is contributed by AnkitRai01
# This Code is improved by cidacoder
C#
// C# implementation of the approach
using System;
class GFG
{
static int N = 3;
// Function to multiply two matrices
static void multiply(int [,]a, int [,]b, int [,]res)
{
int [,]mul = new int[N,N];
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
mul[i,j] = 0;
for (int k = 0; k < N; k++)
mul[i,j] += a[i,k] * b[k,j];
}
}
// Storing the multiplication result in res[][]
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
res[i,j] = mul[i,j];
}
// Function to compute G raised to the power n
static void power(int [,]G, int [,]res, int n)
{
// Base condition
if (n == 1) {
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
res[i,j] = G[i,j];
return;
}
// Recursion call for first half
power(G, res, n / 2);
// Multiply two halves
multiply(res, res, res);
// If n is odd
if (n % 2 != 0)
multiply(res, G, res);
}
// Driver code
public static void Main()
{
int [,]G = { { 1, 1, 1 },
{ 0, 0, 1 },
{ 0, 1, 0 } };
int k = 2;
int [,]res = new int[N,N];
power(G, res, k);
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
Console.Write(res[i,j] + " ");
Console.WriteLine("");
}
}
}
// This code is contributed by anuj_67..
// This code is improved by cidacoder
JavaScript
<script>
// Javascript implementation of the approach
let N = 3;
// Function to multiply two matrices
function multiply(a, b, res)
{
let mul = new Array(N);
for (let i = 0; i < N; i++)
{
mul[i] = new Array(N);
for (let j = 0; j < N; j++)
{
mul[i][j] = 0;
for (let k = 0; k < N; k++)
mul[i][j] += a[i][k] * b[k][j];
}
}
// Storing the multiplication result in res[][]
for (let i = 0; i < N; i++)
for (let j = 0; j < N; j++)
res[i][j] = mul[i][j];
}
// Function to compute G raised to the power n
function power(G, res, n)
{
// Base condition
if (n == 1) {
for (let i = 0; i < N; i++)
for (let j = 0; j < N; j++)
res[i][j] = G[i][j];
return;
}
// Recursion call for first half
power(G, res, parseInt(n / 2, 10));
// Multiply two halves
multiply(res, res, res);
// If n is odd
if (n % 2 != 0)
multiply(res, G, res);
}
let G = [ [ 1, 1, 1 ],
[ 0, 0, 1 ],
[ 0, 1, 0 ] ];
let k = 2;
let res = new Array(N);
for (let i = 0; i < N; i++)
{
res[i] = new Array(N);
for (let j = 0; j < N; j++)
{
res[i][j] = 0;
}
}
power(G, res, k);
for (let i = 0; i < N; i++)
{
for (let j = 0; j < N; j++)
document.write(res[i][j] + " ");
document.write("</br>");
}
</script>
Output: 1 2 2
0 1 0
0 0 1
Time Complexity -
Since we have to multiply the adjacency matrix log(k) times (using matrix exponentiation), the time complexity of the algorithm is O((|V|^3)*log(k)), where V is the number of vertices, and k is the length of the path.
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem