Find all sides of a right angled triangle from given hypotenuse and area | Set 1
Last Updated :
23 Jul, 2025
Given hypotenuse and area of a right angle triangle, get its base and height and if any triangle with given hypotenuse and area is not possible, print not possible.
Examples:
Input : hypotenuse = 5, area = 6
Output : base = 3, height = 4
Input : hypotenuse = 5, area = 7
Output : No triangle possible with above specification.

We can use a property of right angle triangle for solving this problem, which can be stated as follows,
A right angle triangle with fixed hypotenuse attains
maximum area, when it is isosceles i.e. both height
and base becomes equal so if hypotenuse if H, then
by pythagorean theorem,
Base2 + Height2 = H2
For maximum area both base and height should be equal,
b2 + b2 = H2
b = sqrt(H2/2)
Above is the length of base at which triangle attains
maximum area, given area must be less than this maximum
area, otherwise no such triangle will possible.
Now if given area is less than this maximum area, we can do a binary search for length of base, as increasing base will increases area, it is a monotonically increasing function where binary search can be applied easily.
In below code, a method is written for getting area of right angle triangle, recall that for right angle triangle area is ½*base*height and height can be calculated from base and hypotenuse using pythagorean theorem.
Below is the implementation of above approach:
C++
// C++ program to get right angle triangle, given
// hypotenuse and area of triangle
#include <bits/stdc++.h>
using namespace std;
// limit for float comparison
#define eps 1e-6
// Utility method to get area of right angle triangle,
// given base and hypotenuse
double getArea(double base, double hypotenuse)
{
double height = sqrt(hypotenuse*hypotenuse - base*base);
return 0.5 * base * height;
}
// Prints base and height of triangle using hypotenuse
// and area information
void printRightAngleTriangle(int hypotenuse, int area)
{
int hsquare = hypotenuse * hypotenuse;
// maximum area will be obtained when base and height
// are equal (= sqrt(h*h/2))
double sideForMaxArea = sqrt(hsquare / 2.0);
double maxArea = getArea(sideForMaxArea, hypotenuse);
// if given area itself is larger than maxArea then no
// solution is possible
if (area > maxArea)
{
cout << "Not possiblen";
return;
}
double low = 0.0;
double high = sideForMaxArea;
double base;
// binary search for base
while (abs(high - low) > eps)
{
base = (low + high) / 2.0;
if (getArea(base, hypotenuse) >= area)
high = base;
else
low = base;
}
// get height by pythagorean rule
double height = sqrt(hsquare - base*base);
cout << base << " " << height << endl;
}
// Driver code to test above methods
int main()
{
int hypotenuse = 5;
int area = 6;
printRightAngleTriangle(hypotenuse, area);
return 0;
}
Java
// Java program to get right angle triangle, given
// hypotenuse and area of triangle
public class GFG {
// limit for float comparison
final static double eps = (double) 1e-6;
// Utility method to get area of right angle triangle,
// given base and hypotenuse
static double getArea(double base, double hypotenuse) {
double height = Math.sqrt(hypotenuse * hypotenuse - base * base);
return 0.5 * base * height;
}
// Prints base and height of triangle using hypotenuse
// and area information
static void printRightAngleTriangle(int hypotenuse, int area) {
int hsquare = hypotenuse * hypotenuse;
// maximum area will be obtained when base and height
// are equal (= sqrt(h*h/2))
double sideForMaxArea = Math.sqrt(hsquare / 2.0);
double maxArea = getArea(sideForMaxArea, hypotenuse);
// if given area itself is larger than maxArea then no
// solution is possible
if (area > maxArea) {
System.out.print("Not possible");
return;
}
double low = 0.0;
double high = sideForMaxArea;
double base = 0;
// binary search for base
while (Math.abs(high - low) > eps) {
base = (low + high) / 2.0;
if (getArea(base, hypotenuse) >= area) {
high = base;
} else {
low = base;
}
}
// get height by pythagorean rule
double height = Math.sqrt(hsquare - base * base);
System.out.println(Math.round(base) + " " + Math.round(height));
}
// Driver code to test above methods
static public void main(String[] args) {
int hypotenuse = 5;
int area = 6;
printRightAngleTriangle(hypotenuse, area);
}
}
// This code is contributed by 29AjayKumar
Python3
# Python 3 program to get right angle triangle, given
# hypotenuse and area of triangle
# limit for float comparison
# define eps 1e-6
import math
# Utility method to get area of right angle triangle,
# given base and hypotenuse
def getArea(base, hypotenuse):
height = math.sqrt(hypotenuse*hypotenuse - base*base);
return 0.5 * base * height
# Prints base and height of triangle using hypotenuse
# and area information
def printRightAngleTriangle(hypotenuse, area):
hsquare = hypotenuse * hypotenuse
# maximum area will be obtained when base and height
# are equal (= sqrt(h*h/2))
sideForMaxArea = math.sqrt(hsquare / 2.0)
maxArea = getArea(sideForMaxArea, hypotenuse)
# if given area itself is larger than maxArea then no
# solution is possible
if (area > maxArea):
print("Not possiblen")
return
low = 0.0
high = sideForMaxArea
# binary search for base
while (abs(high - low) > 1e-6):
base = (low + high) / 2.0
if (getArea(base, hypotenuse) >= area):
high =base
else:
low = base
# get height by pythagorean rule
height = math.ceil(math.sqrt(hsquare - base*base))
base = math.floor(base)
print(base,height)
# Driver code to test above methods
if __name__ == '__main__':
hypotenuse = 5
area = 6
printRightAngleTriangle(hypotenuse, area)
# This code is contributed by
# Surendra_Gangwar
C#
// C# program to get right angle triangle, given
// hypotenuse and area of triangle
using System;
public class GFG{
// limit for float comparison
static double eps = (double) 1e-6;
// Utility method to get area of right angle triangle,
// given base and hypotenuse
static double getArea(double base1, double hypotenuse) {
double height = Math.Sqrt(hypotenuse * hypotenuse - base1 * base1);
return 0.5 * base1 * height;
}
// Prints base and height of triangle using hypotenuse
// and area information
static void printRightAngleTriangle(int hypotenuse, int area) {
int hsquare = hypotenuse * hypotenuse;
// maximum area will be obtained when base and height
// are equal (= sqrt(h*h/2))
double sideForMaxArea = Math.Sqrt(hsquare / 2.0);
double maxArea = getArea(sideForMaxArea, hypotenuse);
// if given area itself is larger than maxArea then no
// solution is possible
if (area > maxArea) {
Console.Write("Not possible");
return;
}
double low = 0.0;
double high = sideForMaxArea;
double base1 = 0;
// binary search for base
while (Math.Abs(high - low) > eps) {
base1 = (low + high) / 2.0;
if (getArea(base1, hypotenuse) >= area) {
high = base1;
} else {
low = base1;
}
}
// get height by pythagorean rule
double height = Math.Sqrt(hsquare - base1 * base1);
Console.WriteLine(Math.Round(base1) + " " + Math.Round(height));
}
// Driver code to test above methods
static public void Main() {
int hypotenuse = 5;
int area = 6;
printRightAngleTriangle(hypotenuse, area);
}
}
// This code is contributed by 29AjayKumar
PHP
<?php
// PHP program to get right angle triangle,
// given hypotenuse and area of triangle
// limit for float comparison
$eps =.0000001;
// Utility method to get area of right
// angle triangle, given base and hypotenuse
function getArea($base, $hypotenuse)
{
$height = sqrt($hypotenuse * $hypotenuse -
$base * $base);
return 0.5 * $base * $height;
}
// Prints base and height of triangle
// using hypotenuse and area information
function printRightAngleTriangle($hypotenuse,
$area)
{
global $eps;
$hsquare = $hypotenuse * $hypotenuse;
// maximum area will be obtained when base
// and height are equal (= sqrt(h*h/2))
$sideForMaxArea = sqrt($hsquare / 2.0);
$maxArea = getArea($sideForMaxArea,
$hypotenuse);
// if given area itself is larger than
// maxArea then no solution is possible
if ($area > $maxArea)
{
echo "Not possiblen";
return;
}
$low = 0.0;
$high = $sideForMaxArea;
$base;
// binary search for base
while (abs($high - $low) > $eps)
{
$base = ($low + $high) / 2.0;
if (getArea($base, $hypotenuse) >= $area)
$high = $base;
else
$low = $base;
}
// get height by pythagorean rule
$height = sqrt($hsquare - $base * $base);
echo (ceil($base)) ," ",
(floor($height)), "\n";
}
// Driver Code
$hypotenuse = 5;
$area = 6;
printRightAngleTriangle($hypotenuse, $area);
// This code is contributed by Sachin
?>
JavaScript
<script>
// JavaScript program to get right angle triangle, given
// hypotenuse and area of triangle
// limit for float comparison
let eps = 1e-6;
// Utility method to get area of right angle triangle,
// given base and hypotenuse
function getArea(base, hypotenuse) {
let height = Math.sqrt(hypotenuse * hypotenuse - base * base);
return 0.5 * base * height;
}
// Prints base and height of triangle using hypotenuse
// and area information
function printRightAngleTriangle(hypotenuse, area) {
let hsquare = hypotenuse * hypotenuse;
// maximum area will be obtained when base and height
// are equal (= sqrt(h*h/2))
let sideForMaxArea = Math.sqrt(hsquare / 2.0);
let maxArea = getArea(sideForMaxArea, hypotenuse);
// if given area itself is larger than maxArea then no
// solution is possible
if (area > maxArea) {
document.write("Not possible");
return;
}
let low = 0.0;
let high = sideForMaxArea;
let base = 0;
// binary search for base
while (Math.abs(high - low) > eps) {
base = (low + high) / 2.0;
if (getArea(base, hypotenuse) >= area) {
high = base;
} else {
low = base;
}
}
// get height by pythagorean rule
let height = Math.sqrt(hsquare - base * base);
document.write(Math.round(base) + " " + Math.round(height));
}
// Driver Code
let hypotenuse = 5;
let area = 6;
printRightAngleTriangle(hypotenuse, area);
// This code is contributed by chinmoy1997pal.
</script>
Output:
3 4
Time complexity: O(log(n)) because using inbuilt sqrt function
Auxiliary Space: O(1)
One more solution is discussed in below post.
Check if right angles possible from given area and hypotenuse
Area of Rectangle, Right Angled Triangle and Circle | DSA Problem
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem