Fibonacci Heap - Deletion, Extract min and Decrease key
Last Updated :
11 Jul, 2025
In the last post, we discussed the Insertion and Union of Fibonacci Heaps. In this post, we will discuss Extract_min(), Decrease_key() and Deletion() operations on Fibonacci heap.
Prerequisites:
Fibonacci Heap (Introduction)
Fibonacci Heap - Insertion and Union
Extract_min():
We create a function for deleting the minimum node and setting the min pointer to the minimum value in the remaining heap. The following algorithm is followed:
- Delete the min node.
- Set head to the next min node and add all the trees of the deleted node in the root list.
- Create an array of degree pointers of the size of the deleted node.
- Set degree pointer to the current node.
- Move to the next node.
- If degrees are different then set degree pointer to next node.
- If degrees are the same then join the Fibonacci trees by union operation.
- Repeat steps 4 and 5 until the heap is completed.
Example:

Decrease_key():
To decrease the value of any element in the heap, we follow the following algorithm:
- Decrease the value of the node 'x' to the new chosen value.
- CASE 1) If min-heap property is not violated,
- Update min pointer if necessary.
- CASE 2) If min-heap property is violated and parent of 'x' is unmarked,
- Cut off the link between 'x' and its parent.
- Mark the parent of 'x'.
- Add tree rooted at 'x' to the root list and update min pointer if necessary.
- CASE 3)If min-heap property is violated and parent of 'x' is marked,
- Cut off the link between 'x' and its parent p[x].
- Add 'x' to the root list, updating min pointer if necessary.
- Cut off link between p[x] and p[p[x]].
- Add p[x] to the root list, updating min pointer if necessary.
- If p[p[x]] is unmarked, mark it.
- Else, cut off p[p[x]] and repeat steps 4.2 to 4.5, taking p[p[x]] as 'x'.
Example:

Deletion():
To delete any element in a Fibonacci heap, the following algorithm is followed:
- Decrease the value of the node to be deleted 'x' to a minimum by Decrease_key() function.
- By using min-heap property, heapify the heap containing 'x', bringing 'x' to the root list.
- Apply Extract_min() algorithm to the Fibonacci heap.
Example:

Following is a program to demonstrate Extract min(), Deletion() and Decrease key() operations on a Fibonacci Heap:
C++
// C++ program to demonstrate Extract min, Deletion()
// and Decrease key() operations in a fibonacci heap
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <malloc.h>
using namespace std;
// Creating a structure to represent a node in the heap
struct node {
node* parent; // Parent pointer
node* child; // Child pointer
node* left; // Pointer to the node on the left
node* right; // Pointer to the node on the right
int key; // Value of the node
int degree; // Degree of the node
char mark; // Black or white mark of the node
char c; // Flag for assisting in the Find node function
};
// Creating min pointer as "mini"
struct node* mini = NULL;
// Declare an integer for number of nodes in the heap
int no_of_nodes = 0;
// Function to insert a node in heap
void insertion(int val)
{
struct node* new_node = new node();
new_node->key = val;
new_node->degree = 0;
new_node->mark = 'W';
new_node->c = 'N';
new_node->parent = NULL;
new_node->child = NULL;
new_node->left = new_node;
new_node->right = new_node;
if (mini != NULL) {
(mini->left)->right = new_node;
new_node->right = mini;
new_node->left = mini->left;
mini->left = new_node;
if (new_node->key < mini->key)
mini = new_node;
}
else {
mini = new_node;
}
no_of_nodes++;
}
// Linking the heap nodes in parent child relationship
void Fibonnaci_link(struct node* ptr2, struct node* ptr1)
{
(ptr2->left)->right = ptr2->right;
(ptr2->right)->left = ptr2->left;
if (ptr1->right == ptr1)
mini = ptr1;
ptr2->left = ptr2;
ptr2->right = ptr2;
ptr2->parent = ptr1;
if (ptr1->child == NULL)
ptr1->child = ptr2;
ptr2->right = ptr1->child;
ptr2->left = (ptr1->child)->left;
((ptr1->child)->left)->right = ptr2;
(ptr1->child)->left = ptr2;
if (ptr2->key < (ptr1->child)->key)
ptr1->child = ptr2;
ptr1->degree++;
}
// Consolidating the heap
void Consolidate()
{
int temp1;
float temp2 = (log(no_of_nodes)) / (log(2));
int temp3 = temp2;
struct node* arr[temp3+1];
for (int i = 0; i <= temp3; i++)
arr[i] = NULL;
node* ptr1 = mini;
node* ptr2;
node* ptr3;
node* ptr4 = ptr1;
do {
ptr4 = ptr4->right;
temp1 = ptr1->degree;
while (arr[temp1] != NULL) {
ptr2 = arr[temp1];
if (ptr1->key > ptr2->key) {
ptr3 = ptr1;
ptr1 = ptr2;
ptr2 = ptr3;
}
if (ptr2 == mini)
mini = ptr1;
Fibonnaci_link(ptr2, ptr1);
if (ptr1->right == ptr1)
mini = ptr1;
arr[temp1] = NULL;
temp1++;
}
arr[temp1] = ptr1;
ptr1 = ptr1->right;
} while (ptr1 != mini);
mini = NULL;
for (int j = 0; j <= temp3; j++) {
if (arr[j] != NULL) {
arr[j]->left = arr[j];
arr[j]->right = arr[j];
if (mini != NULL) {
(mini->left)->right = arr[j];
arr[j]->right = mini;
arr[j]->left = mini->left;
mini->left = arr[j];
if (arr[j]->key < mini->key)
mini = arr[j];
}
else {
mini = arr[j];
}
if (mini == NULL)
mini = arr[j];
else if (arr[j]->key < mini->key)
mini = arr[j];
}
}
}
// Function to extract minimum node in the heap
void Extract_min()
{
if (mini == NULL)
cout << "The heap is empty" << endl;
else {
node* temp = mini;
node* pntr;
pntr = temp;
node* x = NULL;
if (temp->child != NULL) {
x = temp->child;
do {
pntr = x->right;
(mini->left)->right = x;
x->right = mini;
x->left = mini->left;
mini->left = x;
if (x->key < mini->key)
mini = x;
x->parent = NULL;
x = pntr;
} while (pntr != temp->child);
}
(temp->left)->right = temp->right;
(temp->right)->left = temp->left;
mini = temp->right;
if (temp == temp->right && temp->child == NULL)
mini = NULL;
else {
mini = temp->right;
Consolidate();
}
no_of_nodes--;
}
}
// Cutting a node in the heap to be placed in the root list
void Cut(struct node* found, struct node* temp)
{
if (found == found->right)
temp->child = NULL;
(found->left)->right = found->right;
(found->right)->left = found->left;
if (found == temp->child)
temp->child = found->right;
temp->degree = temp->degree - 1;
found->right = found;
found->left = found;
(mini->left)->right = found;
found->right = mini;
found->left = mini->left;
mini->left = found;
found->parent = NULL;
found->mark = 'B';
}
// Recursive cascade cutting function
void Cascase_cut(struct node* temp)
{
node* ptr5 = temp->parent;
if (ptr5 != NULL) {
if (temp->mark == 'W') {
temp->mark = 'B';
}
else {
Cut(temp, ptr5);
Cascase_cut(ptr5);
}
}
}
// Function to decrease the value of a node in the heap
void Decrease_key(struct node* found, int val)
{
if (mini == NULL)
cout << "The Heap is Empty" << endl;
if (found == NULL)
cout << "Node not found in the Heap" << endl;
found->key = val;
struct node* temp = found->parent;
if (temp != NULL && found->key < temp->key) {
Cut(found, temp);
Cascase_cut(temp);
}
if (found->key < mini->key)
mini = found;
}
// Function to find the given node
void Find(struct node* mini, int old_val, int val)
{
struct node* found = NULL;
node* temp5 = mini;
temp5->c = 'Y';
node* found_ptr = NULL;
if (temp5->key == old_val) {
found_ptr = temp5;
temp5->c = 'N';
found = found_ptr;
Decrease_key(found, val);
}
if (found_ptr == NULL) {
if (temp5->child != NULL)
Find(temp5->child, old_val, val);
if ((temp5->right)->c != 'Y')
Find(temp5->right, old_val, val);
}
temp5->c = 'N';
found = found_ptr;
}
// Deleting a node from the heap
void Deletion(int val)
{
if (mini == NULL)
cout << "The heap is empty" << endl;
else {
// Decreasing the value of the node to 0
Find(mini, val, 0);
// Calling Extract_min function to
// delete minimum value node, which is 0
Extract_min();
cout << "Key Deleted" << endl;
}
}
// Function to display the heap
void display()
{
node* ptr = mini;
if (ptr == NULL)
cout << "The Heap is Empty" << endl;
else {
cout << "The root nodes of Heap are: " << endl;
do {
cout << ptr->key;
ptr = ptr->right;
if (ptr != mini) {
cout << "-->";
}
} while (ptr != mini && ptr->right != NULL);
cout << endl
<< "The heap has " << no_of_nodes << " nodes" << endl
<< endl;
}
}
// Driver code
int main()
{
// We will create a heap and insert 3 nodes into it
cout << "Creating an initial heap" << endl;
insertion(5);
insertion(2);
insertion(8);
// Now we will display the root list of the heap
display();
// Now we will extract the minimum value node from the heap
cout << "Extracting min" << endl;
Extract_min();
display();
// Now we will decrease the value of node '8' to '7'
cout << "Decrease value of 8 to 7" << endl;
Find(mini, 8, 7);
display();
// Now we will delete the node '7'
cout << "Delete the node 7" << endl;
Deletion(7);
display();
return 0;
}
Python3
# Python3 program to demonstrate Extract min, Deletion()
# and Decrease key() operations in a fibonacci heap
import math
# Creating a class to represent a node in the heap
class node:
def __init__(self):
parent=None # Parent pointer
child=None # Child pointer
left=None # Pointer to the node on the left
right=None # Pointer to the node on the right
key=-1 # Value of the node
degree=-1 # Degree of the node
mark='' # Black or white mark of the node
c='' # Flag for assisting in the Find node function
# Creating min pointer as "mini"
mini = None
# Declare an integer for number of nodes in the heap
no_of_nodes = 0
# Function to insert a node in heap
def insertion(val):
global mini,no_of_nodes
new_node = node()
new_node.key = val
new_node.degree = 0
new_node.mark = 'W'
new_node.c = 'N'
new_node.parent = None
new_node.child = None
new_node.left = new_node
new_node.right = new_node
if (mini != None):
mini.left.right = new_node
new_node.right = mini
new_node.left = mini.left
mini.left = new_node
if (new_node.key < mini.key):
mini = new_node
else:
mini = new_node
no_of_nodes+=1
# Linking the heap nodes in parent child relationship
def Fibonnaci_link(ptr2, ptr1):
ptr2.left.right = ptr2.right
ptr2.right.left = ptr2.left
if (ptr1.right == ptr1):
mini = ptr1
ptr2.left = ptr2
ptr2.right = ptr2
ptr2.parent = ptr1
if (ptr1.child == None):
ptr1.child = ptr2
ptr2.right = ptr1.child
ptr2.left = ptr1.child.left
ptr1.child.left.right = ptr2
ptr1.child.left = ptr2
if ptr2.key < ptr1.child.key:
ptr1.child = ptr2
ptr1.degree+=1
# Consolidating the heap
def Consolidate():
global mini
temp2 = math.log2(no_of_nodes)
temp3 = int(temp2)
arr=[None]*(temp3+1)
for i in range(temp3+1):
arr[i] = None
ptr1 = mini
ptr4 = ptr1
while True:
ptr4 = ptr4.right
temp1 = ptr1.degree
while (arr[temp1] != None):
ptr2 = arr[temp1]
if (ptr1.key > ptr2.key):
ptr3 = ptr1
ptr1 = ptr2
ptr2 = ptr3
if (ptr2 == mini):
mini = ptr1
Fibonnaci_link(ptr2, ptr1)
if (ptr1.right == ptr1):
mini = ptr1
arr[temp1] = None
temp1+=1
arr[temp1] = ptr1
ptr1 = ptr1.right
if (ptr1 == mini):
break
mini = None
for j in range(temp3+1):
if (arr[j] != None):
arr[j].left = arr[j]
arr[j].right = arr[j]
if (mini != None) :
mini.left.right = arr[j]
arr[j].right = mini
arr[j].left = mini.left
mini.left = arr[j]
if (arr[j].key < mini.key):
mini = arr[j]
else:
mini = arr[j]
if mini == None:
mini = arr[j]
elif arr[j].key < mini.key:
mini = arr[j]
# Function to extract minimum node in the heap
def Extract_min():
global mini,no_of_nodes
if mini == None:
print("The heap is empty")
else:
temp = mini
pntr = temp
x = None
if (temp.child != None):
x = temp.child
while(True):
pntr = x.right
mini.left.right = x
x.right = mini
x.left = mini.left
mini.left = x
if x.key < mini.key:
mini = x
x.parent = None
x = pntr
if (pntr == temp.child):
break
temp.left.right = temp.right
temp.right.left = temp.left
mini = temp.right
if temp == temp.right and temp.child == None:
mini = None
else:
mini = temp.right
Consolidate()
no_of_nodes-=1
# Cutting a node in the heap to be placed in the root list
def Cut(found, temp):
if (found == found.right):
temp.child = None
found.left.right = found.right
found.right.left = found.left
if (found == temp.child):
temp.child = found.right
temp.degree = temp.degree - 1
found.right = found
found.left = found
mini.left.right = found
found.right = mini
found.left = mini.left
mini.left = found
found.parent = None
found.mark = 'B'
# Recursive cascade cutting function
def Cascase_cut(temp):
ptr5 = temp.parent
if (ptr5 != None):
if (temp.mark == 'W'):
temp.mark = 'B'
else:
Cut(temp, ptr5)
Cascase_cut(ptr5)
# Function to decrease the value of a node in the heap
def Decrease_key(found, val):
global mini
if (mini == None):
print("The Heap is Empty")
if found == None:
print("Node not found in the Heap")
found.key = val
temp = found.parent
if (temp != None and found.key < temp.key):
Cut(found, temp)
Cascase_cut(temp)
if (found.key < mini.key):
mini = found
# Function to find the given node
def Find(mini, old_val, val):
found = None
temp5 = mini
temp5.c = 'Y'
found_ptr = None
if (temp5.key == old_val):
found_ptr = temp5
temp5.c = 'N'
found = found_ptr
Decrease_key(found, val)
if (found_ptr == None):
if (temp5.child != None):
Find(temp5.child, old_val, val)
if temp5.right.c != 'Y':
Find(temp5.right, old_val, val)
temp5.c = 'N'
found = found_ptr
# Deleting a node from the heap
def Deletion(val):
if (mini == None):
print("The heap is empty")
else:
# Decreasing the value of the node to 0
Find(mini, val, 0)
# Calling Extract_min function to
# delete minimum value node, which is 0
Extract_min()
print("Key Deleted")
# Function to display the heap
def display():
ptr = mini
if (ptr == None):
print("The Heap is Empty")
else:
print("The root nodes of Heap are: ")
while(True):
print(ptr.key,end='')
ptr = ptr.right
if (ptr != mini):
print("-->",end='')
if not(ptr != mini and ptr.right != None):
break
print()
print("The heap has {} nodes".format(no_of_nodes))
# Driver code
if __name__ == '__main__':
# We will create a heap and insert 3 nodes into it
print("Creating an initial heap")
insertion(5)
insertion(2)
insertion(8)
# Now we will display the root list of the heap
display()
# Now we will extract the minimum value node from the heap
print("Extracting min")
Extract_min()
display()
# Now we will decrease the value of node '8' to '7'
print("Decrease value of 8 to 7")
Find(mini, 8, 7)
display()
print("Now we will delete the node '7'")
print("Delete the node 7")
Deletion(7)
display()
# This code is contributed by Amartya Ghosh
Output: Creating an initial heap
The root nodes of Heap are:
2-->5-->8
The heap has 3 nodes
Extracting min
The root nodes of Heap are:
5
The heap has 2 nodes
Decrease value of 8 to 7
The root nodes of Heap are:
5
The heap has 2 nodes
Delete the node 7
Key Deleted
The root nodes of Heap are:
5
The heap has 1 nodes
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem