Check if the number is divisible 43 or not
Last Updated :
24 Nov, 2021
Given a number N, the task is to check whether the number is divisible by 43 or not.
Examples:
Input: N = 2795
Output: yes
Explanation:
43 * 65 = 2795
Input: N = 11094
Output: yes
Explanation:
43 * 258 = 11094
Approach: The divisibility test of 43 is:
- Extract the last digit.
- Add 13 * last digit from the remaining number obtained after removing the last digit.
- Repeat the above steps until a two-digit number, or zero, is obtained.
- If the two-digit number is divisible by 43, or it is 0, then the original number is also divisible by 43.
For example:
If N = 11739
Step 1:
N = 11739
Last digit = 9
Remaining number = 1173
Adding 13 times last digit
Resultant number = 1173 + 13*9 = 1290
Step 2:
N = 1290
Since 129 is divisible by 43 as 43 * 3 = 129
Therefore N = 11739 is also divisible by 43
Below is the implementation of the above approach:
C++
// C++ program to check whether a number
// is divisible by 43 or not
#include<bits/stdc++.h>
#include<stdlib.h>
using namespace std;
// Function to check if the number is divisible by 43 or not
bool isDivisible(int n)
{
int d;
// While there are at least two digits
while (n / 100)
{
// Extracting the last
d = n % 10;
// Truncating the number
n /= 10;
// adding thirteen times the last
// digit to the remaining number
n = abs(n+(d * 13));
}
// Finally return if the two-digit
// number is divisible by 43 or not
return (n % 43 == 0) ;
}
// Driver Code
int main() {
int N = 2795;
if (isDivisible(N))
cout<<"Yes"<<endl ;
else
cout<<"No"<<endl ;
return 0;
}
// This code is contributed by ANKITKUMAR34
Java
// Java program to check whether a number
// is divisible by 43 or not
class GFG
{
// Function to check if the number is divisible by 43 or not
static boolean isDivisible(int n)
{
int d;
// While there are at least two digits
while ((n / 100) > 0)
{
// Extracting the last
d = n % 10;
// Truncating the number
n /= 10;
// adding thirteen times the last
// digit to the remaining number
n = Math.abs(n+(d * 13));
}
// Finally return if the two-digit
// number is divisible by 43 or not
return (n % 43 == 0) ;
}
// Driver Code
public static void main(String[] args) {
int N = 2795;
if (isDivisible(N))
System.out.print("Yes");
else
System.out.print("No");
}
}
// This code is contributed by PrinciRaj1992
Python 3
# Python program to check whether a number
# is divisible by 43 or not
# Function to check if the number is
# divisible by 43 or not
def isDivisible(n) :
# While there are at least two digits
while n // 100 :
# Extracting the last
d = n % 10
# Truncating the number
n //= 10
# Adding thirteen times the last
# digit to the remaining number
n = abs(n+(d * 13))
# Finally return if the two-digit
# number is divisible by 43 or not
return (n % 43 == 0)
# Driver Code
if __name__ == "__main__" :
N = 2795
if (isDivisible(N)):
print("Yes")
else :
print("No")
C#
// C# program to check whether a number
// is divisible by 43 or not
using System;
class GFG
{
// Function to check if the number is divisible by 43 or not
static bool isDivisible(int n)
{
int d;
// While there are at least two digits
while (n / 100 > 0)
{
// Extracting the last
d = n % 10;
// Truncating the number
n /= 10;
// adding thirteen times the last
// digit to the remaining number
n = Math.Abs(n + (d * 13));
}
// Finally return if the two-digit
// number is divisible by 43 or not
return (n % 43 == 0) ;
}
// Driver Code
public static void Main()
{
int N = 2795;
if (isDivisible(N))
Console.WriteLine("Yes");
else
Console.WriteLine("No");
}
}
// This code is contributed by AbhiThakur
JavaScript
<script>
//javascript program to check whether a number
// is divisible by 43 or not
// Function to check if the number is divisible by 43 or not
function isDivisible(n)
{
let d;
// While there are at least two digits
while(parseInt(n/100) > 0)
{
// Extracting the last
d = n % 10;
// Truncating the number
n = parseInt(n / 10)
// adding thirteen times the last
// digit to the remaining number
n = Math.abs(n+(d * 13));
}
// Finally return if the two-digit
// number is divisible by 43 or not
return (n % 43 == 0) ;
}
// Driver Code
let N = 2795;
if (isDivisible(N))
document.write("Yes");
else
document.write("No");
// This code is contributed by vaibhavrabadiya117.
</script>
Time Complexity: O(log10N)
Auxiliary Space: O(1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem