These are all different types for sorting techniques that behave very differently. Let's study which technique works how and which one to use.
Let 'a' be a numpy array
- a.sort()
(i) Sorts the array in-place & returns None
(ii) Return type is None
(iii) Occupies less space. No copy created as it directly sorts the original array
(iv) Faster than sorted(a)
Python3 # Python code to sort an array in-place # using a.sort import numpy as np # Numpy array created a = np.array([9, 3, 1, 7, 4, 3, 6]) # unsorted array print print('Original array:\n', a) # Return type is None print('Return type:', a.sort()) # Sorted array output print('Original array sorted->', a)
OUTPUT: For a.sort() Original array: [9 3 1 7 4 3 6] Return type: None Original array sorted-> [1 3 3 4 6 7 9]
- sorted(a)
(i) Creates a new list from the old & returns the new one, sorted
(ii) Return type is a list
(iii) Occupies more space as copy of original array is created and then sorting is done
(iv) Slower than a.sort()
Python3 # Python code to create a sorted copy using # sorted() import numpy as np # Numpy array created a = np.array([9, 3, 1, 7, 4, 3, 6]) # unsorted array print print('Original array:\n', a) b = sorted(a) # sorted list returned to b, b type is # <class 'list'> print('New array sorted->', b) # original array no change print('Original array->', a)
OUTPUT:a.sorted() Original array: [9 3 1 7 4 3 6] New array sorted-> [1, 3, 3, 4, 6, 7, 9] Original array-> [9 3 1 7 4 3 6]
- np.argsort(a)
(i) Returns the indices that would sort an array
(ii) Return type is numpy array
(iii) Occupies space as a new array of sorted indices is returned
Python3 # Python code to demonstrate working of np.argsort import numpy as np # Numpy array created a = np.array([9, 3, 1, 7, 4, 3, 6]) # unsorted array print print('Original array:\n', a) # Sort array indices b = np.argsort(a) print('Sorted indices of original array->', b) # To get sorted array using sorted indices # c is temp array created of same len as of b c = np.zeros(len(b), dtype = int) for i in range(0, len(b)): c[i]= a[b[i]] print('Sorted array->', c)
OUTPUT:np.argsort(a) Original array: [9 3 1 7 4 3 6] Sorted indices of original array-> [2 1 5 4 6 3 0] Sorted array-> [1 3 3 4 6 7 9]
- np.lexsort((b, a))
(i) Perform an indirect sort using a sequence of keys
(ii) Sort by a, then by b
(iii) Return type ndarray of ints Array of indices that sort the keys along the specified axis
(iv) Occupies space as a new array of sorted indices pair wise is returned.
Python3 # Python code to demonstrate working of # np.lexsort() import numpy as np # Numpy array created a = np.array([9, 3, 1, 3, 4, 3, 6]) # First column b = np.array([4, 6, 9, 2, 1, 8, 7]) # Second column print('column a, column b') for (i, j) in zip(a, b): print(i, ' ', j) ind = np.lexsort((b, a)) # Sort by a then by b print('Sorted indices->', ind)
OUTPUT:np.lexsort((b, a)) column a, column b 9 4 3 6 1 9 3 2 4 1 3 8 6 7 Sorted indices-> [2 3 1 5 4 6 0]