XOR of path between any two nodes in a Binary Tree
Given a binary tree with distinct nodes and a pair of two nodes. The task is to find the XOR of all of the nodes which comes on the path between the given two nodes.
For Example, in the above binary tree for nodes (3, 5) XOR of path will be (3 XOR 1 XOR 0 XOR 2 XOR 5) = 5.
The idea is to make use of these two properties of XOR:
- XOR of same elements is zero.
- XOR of an element with zero gives the element itself.
Now, for each node find and store the XOR along the path from root to that node. This can be done using simple DFS. Now the XOR along path between any two nodes will be:
(XOR of path from root to first node) XOR (XOR of path from root to second node)
Explanation: There arises two different cases:
- If the two nodes are in different subtrees of root nodes. That is one in the left subtree and the other in the right subtree. In this case it is clear that the formulae written above will give the correct result as the path between the nodes goes through root with all distinct nodes.
- If the nodes are in the same subtree. That is either in the left subtree or in the right subtree. In this case you need to observe that path from root to the two nodes will have an intersection point before which the path is common for the two nodes from root. The XOR of this common path is calculated twice and cancels out, so it does not effect the result.
Note: For a single pair of nodes, it is not needed to store the path from roots to all nodes. This is efficient and written considering if there is a list of pair of nodes and for every pair we have to find XOR of path between the two nodes in a Binary Tree.
Below is the implementation of the above approach:
C++
// C++ program to find XOR of path between // any two nodes in a Binary Tree #include <bits/stdc++.h> using namespace std; // structure of a node of binary tree struct Node { int data; Node *left, *right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct Node* getNode( int data) { struct Node* newNode = new Node; newNode->data = data; newNode->left = newNode->right = NULL; return newNode; } // Function to store XOR of path from // root to every node // mp[x] will store XOR of path from root to node x void storePath(Node* root, unordered_map< int , int >& mp, int XOR) { // if root is NULL // there is no path if (!root) return ; mp.insert(make_pair(root->data, XOR ^ root->data)); XOR ^= root->data; if (root->left) storePath(root->left, mp, XOR); if (root->right) storePath(root->right, mp, XOR); } // Function to get XOR of nodes between any two nodes int findXORPath(unordered_map< int , int > mp, int node1, int node2) { return mp[node1] ^ mp[node2]; } // Driver Code int main() { // binary tree formation struct Node* root = getNode(0); root->left = getNode(1); root->left->left = getNode(3); root->left->left->left = getNode(7); root->left->right = getNode(4); root->left->right->left = getNode(8); root->left->right->right = getNode(9); root->right = getNode(2); root->right->left = getNode(5); root->right->right = getNode(6); int XOR = 0; unordered_map< int , int > mp; int node1 = 3; int node2 = 5; // Store XOR path from root to every node storePath(root, mp, XOR); cout << findXORPath(mp, node1, node2); return 0; } |
Java
// Java program to find XOR of path between // any two nodes in a Binary Tree import java.util.*; class Solution { // structure of a node of binary tree static class Node { int data; Node left, right; } /* Helper function that allocates a new node with the given data and null left and right pointers. */ static Node getNode( int data) { Node newNode = new Node(); newNode.data = data; newNode.left = newNode.right = null ; return newNode; } // Function to store XOR of path from // root to every node // mp[x] will store XOR of path from root to node x static void storePath(Node root, Map<Integer, Integer> mp, int XOR) { // if root is null // there is no path if (root== null ) return ; mp.put(root.data, XOR ^ root.data); XOR ^= root.data; if (root.left!= null ) storePath(root.left, mp, XOR); if (root.right!= null ) storePath(root.right, mp, XOR); } // Function to get XOR of nodes between any two nodes static int findXORPath(Map<Integer, Integer> mp, int node1, int node2) { return mp.get(node1) ^ mp.get(node2); } // Driver Code public static void main(String args[]) { // binary tree formation Node root = getNode( 0 ); root.left = getNode( 1 ); root.left.left = getNode( 3 ); root.left.left.left = getNode( 7 ); root.left.right = getNode( 4 ); root.left.right.left = getNode( 8 ); root.left.right.right = getNode( 9 ); root.right = getNode( 2 ); root.right.left = getNode( 5 ); root.right.right = getNode( 6 ); int XOR = 0 ; Map<Integer, Integer> mp= new HashMap<Integer, Integer>(); int node1 = 3 ; int node2 = 5 ; // Store XOR path from root to every node storePath(root, mp, XOR); System.out.println( findXORPath(mp, node1, node2)); } } //contributed by Arnab Kundu |
Python3
# Python3 program to find XOR of path between # any two nodes in a Binary Tree # Tree node class Node: def __init__( self , data): self .data = data self .left = None self .right = None # Helper function that allocates a node with the # given data and None left and right pointers. def getNode(data): newNode = Node( 0 ) newNode.data = data newNode.left = newNode.right = None return newNode mp = dict () # Function to store XOR of path from # root to every node # mp[x] will store XOR of path from root to node x def storePath( root, XOR) : global mp # if root is None # there is no path if (root = = None ) : return mp[root.data] = XOR ^ root.data; XOR = XOR ^ root.data if (root.left ! = None ): storePath(root.left, XOR) if (root.right ! = None ) : storePath(root.right, XOR) # Function to get XOR of nodes between any two nodes def findXORPath( node1, node2) : global mp return mp.get(node1, 0 ) ^ mp.get(node2, 0 ) # Driver Code # binary tree formation root = getNode( 0 ) root.left = getNode( 1 ) root.left.left = getNode( 3 ) root.left.left.left = getNode( 7 ) root.left.right = getNode( 4 ) root.left.right.left = getNode( 8 ) root.left.right.right = getNode( 9 ) root.right = getNode( 2 ) root.right.left = getNode( 5 ) root.right.right = getNode( 6 ) XOR = 0 node1 = 3 node2 = 5 # Store XOR path from root to every node storePath(root, XOR) print ( findXORPath( node1, node2)) # This code is contributed by Arnab Kundu |
C#
// C# program to find XOR of path between // any two nodes in a Binary Tree using System; using System.Collections.Generic; class GFG { // structure of a node of binary tree class Node { public int data; public Node left, right; } /* Helper function that allocates a new node with the given data and null left and right pointers. */ static Node getNode( int data) { Node newNode = new Node(); newNode.data = data; newNode.left = newNode.right = null ; return newNode; } // Function to store XOR of path from // root to every node // mp[x] will store XOR of path from root to node x static void storePath(Node root, Dictionary< int , int > mp, int XOR) { // if root is null // there is no path if (root == null ) return ; mp.Add(root.data, XOR ^ root.data); XOR ^= root.data; if (root.left != null ) storePath(root.left, mp, XOR); if (root.right != null ) storePath(root.right, mp, XOR); } // Function to get XOR of nodes between any two nodes static int findXORPath(Dictionary< int , int > mp, int node1, int node2) { return mp[node1] ^ mp[node2]; } // Driver Code public static void Main() { // binary tree formation Node root = getNode(0); root.left = getNode(1); root.left.left = getNode(3); root.left.left.left = getNode(7); root.left.right = getNode(4); root.left.right.left = getNode(8); root.left.right.right = getNode(9); root.right = getNode(2); root.right.left = getNode(5); root.right.right = getNode(6); int XOR = 0; Dictionary< int , int > mp = new Dictionary< int , int >(); int node1 = 3; int node2 = 5; // Store XOR path from root to every node storePath(root, mp, XOR); Console.WriteLine( findXORPath(mp, node1, node2)); } } /* This code is contributed PrinciRaj1992 */ |
Javascript
<script> // JavaScript program to find XOR of path between // any two nodes in a Binary Tree // structure of a node of binary tree class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } /* Helper function that allocates a new node with the given data and null left and right pointers. */ function getNode(data) { let newNode = new Node(data); return newNode; } // Function to store XOR of path from // root to every node // mp[x] will store XOR of path from root to node x function storePath(root, mp, XOR) { // if root is null // there is no path if (root== null ) return ; mp.set(root.data, XOR ^ root.data); XOR ^= root.data; if (root.left!= null ) storePath(root.left, mp, XOR); if (root.right!= null ) storePath(root.right, mp, XOR); } // Function to get XOR of nodes between any two nodes function findXORPath(mp, node1, node2) { return mp.get(node1) ^ mp.get(node2); } // binary tree formation let root = getNode(0); root.left = getNode(1); root.left.left = getNode(3); root.left.left.left = getNode(7); root.left.right = getNode(4); root.left.right.left = getNode(8); root.left.right.right = getNode(9); root.right = getNode(2); root.right.left = getNode(5); root.right.right = getNode(6); let XOR = 0; let mp= new Map(); let node1 = 3; let node2 = 5; // Store XOR path from root to every node storePath(root, mp, XOR); document.write(findXORPath(mp, node1, node2)); </script> |
5
Complexity Analysis:
- Time Complexity: O(N)
- Auxiliary Space: O(N), where N is the number of nodes.
Please Login to comment...