# XOR of pairwise sum of every unordered pairs in an array

• Difficulty Level : Expert
• Last Updated : 02 Mar, 2021

Given an array arr[] of length N, the task is to find the XOR of pairwise sum of every possible unordered pairs of the array. The unordered pairs sum is defined as follows –

```XOR of pairwise sum  = (A + A) ^
(A + A) ^ ...(A + A[N]) ^
(A + A) ^ ...(A + A[N]) ^
.......
(A[N-1] + A[N])

Notice that after including A and A
as pairs, then A and A are not included.```

Examples:

Input: arr[] = {1, 2}
Output:
Explanation:
There is only one unordered pair. That is (1, 2)
Input: arr[] = {1, 2, 3}
Output:
Explanation:
Unordered pairs of the numbers –
{(1, 2), (1, 3), (2, 3)}
XOR of unordered pairswise sum –
=> (1 + 2) ^ (1 + 3) ^ (2 + 3)
=> 3 ^ 4 ^ 5
=> 2

Naive Approach: The idea is to find every possible unordered pair with the help of the two loops and find the XOR of these pairs.
Below is the implementation of the above approach:

## C++

 `// C++ implementation to find XOR of``// pairwise sum of every unordered``// pairs in an array` `#include ` `using` `namespace` `std;` `// Function to find XOR of pairwise``// sum of every unordered pairs``int` `xorOfSum(``int` `a[], ``int` `n)``{``    ``int` `answer = 0;``    ` `    ``// Loop to choose every possible``    ``// pairs in the array``    ``for` `(``int` `i = 0; i < n; i++) {``        ``for` `(``int` `j = i + 1; j < n; j++)``            ``answer ^= (a[i] + a[j]);``    ``}` `    ``return` `answer;``}` `// Driver Code``int` `main()``{``    ``int` `n = 3;``    ``int` `A[n] = { 1, 2, 3 };` `    ``cout << xorOfSum(A, n);``    ``return` `0;``}`

## Java

 `// Java implementation to find XOR of``// pairwise sum of every unordered``// pairs in an array``class` `GFG{`` ` `// Function to find XOR of pairwise``// sum of every unordered pairs``static` `int` `xorOfSum(``int` `a[], ``int` `n)``{``    ``int` `answer = ``0``;``     ` `    ``// Loop to choose every possible``    ``// pairs in the array``    ``for` `(``int` `i = ``0``; i < n; i++) {``        ``for` `(``int` `j = i + ``1``; j < n; j++)``            ``answer ^= (a[i] + a[j]);``    ``}`` ` `    ``return` `answer;``}`` ` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int` `n = ``3``;``    ``int` `A[] = { ``1``, ``2``, ``3` `};`` ` `    ``System.out.print(xorOfSum(A, n));``}``}` `// This code is contributed by PrinciRaj1992`

## Python3

 `# Python3 implementation to find XOR of``# pairwise sum of every unordered``# pairs in an array` `# Function to find XOR of pairwise``# sum of every unordered pairs``def` `xorOfSum(a, n):``    ``answer ``=` `0` `    ``# Loop to choose every possible``    ``# pairs in the array``    ``for` `i ``in` `range``(n):``        ``for` `j ``in` `range``(i ``+` `1``, n):``            ``answer ^``=` `(a[i] ``+` `a[j])` `    ``return` `answer` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``n ``=` `3``    ``A``=``[``1``, ``2``, ``3``]` `    ``print``(xorOfSum(A, n))` `# This code is contributed by mohit kumar 29`

## C#

 `// C# implementation to find XOR of``// pairwise sum of every unordered``// pairs in an array``using` `System;``using` `System.Collections.Generic;` `class` `GFG{``  ` `// Function to find XOR of pairwise``// sum of every unordered pairs``static` `int` `xorOfSum(``int` `[]a, ``int` `n)``{``    ``int` `answer = 0;``      ` `    ``// Loop to choose every possible``    ``// pairs in the array``    ``for` `(``int` `i = 0; i < n; i++) {``        ``for` `(``int` `j = i + 1; j < n; j++)``            ``answer ^= (a[i] + a[j]);``    ``}``  ` `    ``return` `answer;``}``  ` `// Driver Code``public` `static` `void` `Main(String[] args)``{``    ``int` `n = 3;``    ``int` `[]A = { 1, 2, 3 };``  ` `    ``Console.Write(xorOfSum(A, n));``}``}`` ` `// This code is contributed by PrinciRaj1992`

## Javascript

 ``
Output:
`2`

Efficient Approach:

• For obtaining Kth bit of the final xor value we see in all the pair-sums, that kth bit of them is set or not. If there are even a number of pairs that have the Kth bit set, then for the Kth bit, their xor is zero else one.

• For finding count of pair sums having Kth bit set, we notice that we can mod all array elements by 2(K+1). This is because X and Y belong to input array and Sum = X + Y. Then X + Y can add up to have their Kth bit set which means Sum >= 2K. It can also be observed that they can have a carryover from addition which makes numbers in the range [2(K+1), 2(K+1) + 2K) have their Kth bit not set. So we only care about the Kth and (K+1)th bit of all the numbers to check the XOR of Kth bit.

• After the mod operation is performed, for sum to have kth bit set, its value will be in range – [2K, 2(K+1) ) U [2(K+1) + 2K, Max-Value-Sum-Can-Take ].

• To find the numbers in the said range, make another array B containing modded array elements of arr[], and sort them. Then Sum can be assumed as Sum = Bi + Bj. Finally, find the maximum bound of j using binary search (built-in lower_bound in C++). Fix i and since the array is sorted find the last j that satisfies the given condition and all the numbers in the range of indices can be added to the count to check the xor.

Below is the implementation of the above approach:

## C++

 `// C++ implementation to find XOR of``// pairwise sum of every unordered``// pairs in an array` `#include ` `using` `namespace` `std;` `// Function to find XOR of pairwise``// sum of every unordered pairs``int` `xorOfSum(``int` `a[], ``int` `n)``{` `    ``int` `i, j, k;``    ` `    ``// Sort the array``    ``sort(a, a + n);` `    ``int` `ans = 0;` `    ``// Array elements are not greater``    ``// than 1e7 so 27 bits are suffice``    ``for` `(k = 0; k < 27; ++k) {``        ` `        ``// Modded elements of array``        ``vector<``int``> b(n);``        ` `        ``// Loop to find the modded``        ``// elements of array``        ``for` `(i = 0; i < n; i++)``            ``b[i] = a[i] % (1 << (k + 1));` `        ``// Sort the modded array``        ``sort(b.begin(), b.end());` `        ``int` `cnt = 0;``        ``for` `(i = 0; i < n; i++) {``            ``// finding the bound for j``            ``// for given i using binary search``            ``int` `l = lower_bound(b.begin() +``                           ``i + 1, b.end(),``               ``(1 << k) - b[i]) - b.begin();``            ``int` `r = lower_bound(b.begin() +``                    ``i + 1, b.end(), (1 << (k + 1)) -``                          ``b[i]) - b.begin();` `            ``// All the numbers in the range``            ``// of indices can be added to the``            ``// count to check the xor.``            ``cnt += r - l;` `            ``l = lower_bound(b.begin() + i + 1,``                 ``b.end(), (1 << (k + 1)) +``                 ``(1 << k) - b[i]) - b.begin();``            ``cnt += n - l;``        ``}``        ``// Remainder of cnt * kth power``        ``// of 2 added to the xor value``        ``ans += (cnt % 2) * 1LL * (1 << k);``    ``}` `    ``return` `ans;``}` `// Driver Code``int` `main()``{``    ``int` `n = 3;``    ``int` `A[n] = { 1, 2, 3 };` `    ``cout << xorOfSum(A, n);``    ``return` `0;``}`
Output:
`2`

Performance Analysis:

• Time complexity : O(N * log(max(A))*log(N)

Outermost loop runs for log(max(A)) times and for each loop we create and sort array b ,which consists of N elements ,hence complexity is O(N*log(N)*log(max(A)))

My Personal Notes arrow_drop_up