Skip to content
Related Articles

Related Articles

Improve Article

XOR of a subarray (range of elements) | Set 2

  • Difficulty Level : Easy
  • Last Updated : 13 Jul, 2021

Given an array integer arr[] of size N and Q queries. Each query is of the form (L, R), where L and R are indices of the array. The task is to find the XOR value of the subarray arr[L…R]

Examples:  

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {2, 5, 1, 6, 1, 2, 5} query[] = {{1, 4}} 
Output:
The XOR value of arr[1…4] is 3.



Input: arr[] = {2, 5, 1, 6, 1, 2, 5} query[] = {{0, 6}} 
Output:
The XOR value of arr[0…6] is 6.  

O(N) auxiliary space approach: Please refer to this article for the O(N) auxiliary space approach.

Approach: Here we will discuss a constant space solution, but we will modify the input array.  

1. Update the input array from index 1 to N – 1, such that arr[i] stores the XOR from arr[0] to arr[i]

arr[i] = XOR(arr[0], arr[1], .., arr[i]) 
 

2. To process a query from L to R just return arr[L-1] ^ arr[R].

For example:  

Consider the example: arr[] = { 3, 2, 4, 5, 1, 1, 5, 3 }, query[] = {{1, 4 }, { 3, 7}} 
After taking the XOR of consecutive elements, arr[] = {3, 1, 5, 0, 1, 0, 5, 6} 
For first query {1, 4} ans = arr[0] ^ arr[4] = 3 ^ 1 = 2 
For the second query {3, 7} ans = arr[2] ^ arr[7] = 5 ^ 6 = 3  

Below is the implementation of the above approach: 

C++




// C++ program to find XOR
// in a range from L to R
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find XOR
// in a range from L to R
void find_Xor(int arr[],
              pair<int, int> query[],
              int N, int Q)
{
    // Compute xor from arr[0] to arr[i]
    for (int i = 1; i < N; i++) {
        arr[i] = arr[i] ^ arr[i - 1];
    }
 
    int ans = 0;
 
    // process every query
    // in constant time
    for (int i = 0; i < Q; i++) {
 
        // if L==0
        if (query[i].first == 0)
            ans = arr[query[i].second];
        else
            ans = arr[query[i].first - 1]
                  ^ arr[query[i].second];
 
        cout << ans << endl;
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 2, 4, 5,
                  1, 1, 5, 3 };
    int N = 8;
    int Q = 2;
    pair<int, int> query[Q]
        = { { 1, 4 },
            { 3, 7 } };
 
    // query[]
    find_Xor(arr, query, N, Q);
    return 0;
}

Java




// Java program to find XOR
// in a range from L to R
class GFG{
     
static class pair
{
    int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to find XOR
// in a range from L to R
static void find_Xor(int arr[],
                     pair query[],
                     int N, int Q)
{
     
    // Compute xor from arr[0] to arr[i]
    for(int i = 1; i < N; i++)
    {
       arr[i] = arr[i] ^ arr[i - 1];
    }
     
    int ans = 0;
 
    // Process every query
    // in constant time
    for(int i = 0; i < Q; i++)
    {
         
       // If L==0
       if (query[i].first == 0)
           ans = arr[query[i].second];
       else
           ans = arr[query[i].first - 1] ^
                 arr[query[i].second];
 
       System.out.print(ans + "\n");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 3, 2, 4, 5,
                  1, 1, 5, 3 };
    int N = 8;
    int Q = 2;
     
    pair query[] = { new pair(1, 4),
                     new pair(3, 7) };
 
    // query[]
    find_Xor(arr, query, N, Q);
}
}
 
// This code is contributed by gauravrajput1

Python3




# Python3 program to find XOR
# in a range from L to R
 
# Function to find XOR
# in a range from L to R
def find_Xor(arr, query, N, Q):
     
    # Compute xor from arr[0] to arr[i]
    for i in range(1, N):
        arr[i] = arr[i] ^ arr[i - 1]
         
    ans = 0
     
    # Process every query
    # in constant time
    for i in range(Q):
         
        # If L == 0
        if query[i][0] == 0:
            ans = arr[query[i][1]]
        else:
            ans = (arr[query[i][0] - 1] ^
                   arr[query[i][1]])
        print(ans)
     
# Driver code
def main():
     
    arr = [ 3, 2, 4, 5, 1, 1, 5, 3 ]
    N = 8
    Q = 2
     
    # query[]
    query = [ [ 1, 4 ],
              [ 3, 7 ] ]
               
    find_Xor(arr, query, N, Q)
     
main()
 
# This code is contributed by Stuti Pathak

C#




// C# program to find XOR
// in a range from L to R
using System;
 
class GFG{   
class pair
{
    public int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
  
// Function to find XOR
// in a range from L to R
static void find_Xor(int []arr,
                     pair []query,
                     int N, int Q)
{
      
    // Compute xor from arr[0] to arr[i]
    for(int i = 1; i < N; i++)
    {
       arr[i] = arr[i] ^ arr[i - 1];
    }
      
    int ans = 0;
  
    // Process every query
    // in constant time
    for(int i = 0; i < Q; i++)
    {
          
       // If L==0
       if (query[i].first == 0)
           ans = arr[query[i].second];
       else
           ans = arr[query[i].first - 1] ^
                 arr[query[i].second];
  
       Console.Write(ans + "\n");
    }
}
  
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 3, 2, 4, 5,
                  1, 1, 5, 3 };
    int N = 8;
    int Q = 2;
      
    pair []query = { new pair(1, 4),
                     new pair(3, 7) };
  
    // query[]
    find_Xor(arr, query, N, Q);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript program to find XOR
// in a range from L to R
 
// Function to find XOR
// in a range from L to R
function find_Xor(arr, query, N, Q)
{
    // Compute xor from arr[0] to arr[i]
    for (var i = 1; i < N; i++) {
        arr[i] = arr[i] ^ arr[i - 1];
    }
 
    var ans = 0;
 
    // process every query
    // in constant time
    for (var i = 0; i < Q; i++) {
 
        // if L==0
        if (query[i][0] == 0)
            ans = arr[query[i][1]];
        else
            ans = arr[query[i][0] - 1]
                  ^ arr[query[i][1]];
 
        document.write( ans + "<br>");
    }
}
 
// Driver Code
var arr = [3, 2, 4, 5,
              1, 1, 5, 3];
var N = 8;
var Q = 2;
var query
    = [[1, 4],
        [3, 7]];
// query[]
find_Xor(arr, query, N, Q);
 
 
</script>
Output: 
2
3

 

Time Complexity: O (N + Q) 
Auxiliary Space: O (1)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :