You are given a function rand(a, b) which generates equiprobable random numbers between [a, b] inclusive. Generate 3 numbers x, y, z with probability P(x), P(y), P(z) such that P(x) + P(y) + P(z) = 1 using the given rand(a,b) function.
The idea is to utilize the equiprobable feature of the rand(a,b) provided. Let the given probabilities be in percentage form, for example P(x)=40%, P(y)=25%, P(z)=35%..
Following are the detailed steps.
1) Generate a random number between 1 and 100. Since they are equiprobable, the probability of each number appearing is 1/100.
2) Following are some important points to note about generated random number ‘r’.
a) ‘r’ is smaller than or equal to P(x) with probability P(x)/100.
b) ‘r’ is greater than P(x) and smaller than or equal P(x) + P(y) with P(y)/100.
c) ‘r’ is greater than P(x) + P(y) and smaller than or equal 100 (or P(x) + P(y) + P(z)) with probability P(z)/100.
C++
int random( int x, int y, int z, int px, int py, int pz)
{
int r = rand (1, 100);
if (r <= px)
return x;
if (r <= (px+py))
return y;
else
return z;
}
|
C
int random( int x, int y, int z, int px, int py, int pz)
{
int r = rand (1, 100);
if (r <= px)
return x;
if (r <= (px+py))
return y;
else
return z;
}
|
Java
static int random( int x, int y, int z, int px, int py,
int pz)
{
int r = ( int )(Math.random() * 100 );
if (r <= px)
return x;
if (r <= (px + py))
return y;
else
return z;
}
|
Python3
import random
def random(x, y, z, px, py, pz):
r = random.randint( 1 , 100 )
if (r < = px):
return x
if (r < = (px + py)):
return y
else :
return z
|
C#
static int random( int x, int y, int z, int px, int py,
int pz)
{
Random rInt = new Random();
int r = rInt.Next(0, 100);
if (r <= px)
return x;
if (r <= (px + py))
return y;
else
return z;
}
|
Javascript
function random(x, y, z, px, py, pz)
{
let r = Math.floor(Math.random() * 100) + 1;
if (r <= px)
return x;
if (r <= (px+py))
return y;
else
return z;
}
|
Time Complexity: O(1)
Auxiliary Space: O(1)
This function will solve the purpose of generating 3 numbers with given three probabilities.
This article is contributed by Harsh Agarwal. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above