Word Break Problem | DP-32
Given an input string and a dictionary of words, find out if the input string can be segmented into a space-separated sequence of dictionary words. See following examples for more details.
This is a famous Google interview question, also being asked by many other companies now a days.
Consider the following dictionary { i, like, sam, sung, samsung, mobile, ice, cream, icecream, man, go, mango} Input: ilike Output: Yes The string can be segmented as "i like". Input: ilikesamsung Output: Yes The string can be segmented as "i like samsung" or "i like sam sung".
Recursive implementation:
The idea is simple, we consider each prefix and search it in dictionary. If the prefix is present in dictionary, we recur for rest of the string (or suffix).
Python3
def wordBreak(wordList, word): if word = = '': return True else : wordLen = len (word) return any ([(word[:i] in wordList) and wordBreak(wordList, word[i:]) for i in range ( 1 , wordLen + 1 )]) |
If the recursive call for suffix returns true, we return true, otherwise we try next prefix. If we have tried all prefixes and none of them resulted in a solution, we return false.
We strongly recommend to see substr function which is used extensively in following implementations.
C++
// A recursive program to test whether a given // string can be segmented into space separated // words in dictionary #include <iostream> using namespace std; /* A utility function to check whether a word is present in dictionary or not. An array of strings is used for dictionary. Using array of strings for dictionary is definitely not a good idea. We have used for simplicity of the program*/ int dictionaryContains(string word) { string dictionary[] = { "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" }; int size = sizeof (dictionary)/ sizeof (dictionary[0]); for ( int i = 0; i < size; i++) if (dictionary[i].compare(word) == 0) return true ; return false ; } // returns true if string can be segmented into space // separated words, otherwise returns false bool wordBreak(string str) { int size = str.size(); // Base case if (size == 0) return true ; // Try all prefixes of lengths from 1 to size for ( int i=1; i<=size; i++) { // The parameter for dictionaryContains is // str.substr(0, i) which is prefix (of input // string) of length 'i'. We first check whether // current prefix is in dictionary. Then we // recursively check for remaining string // str.substr(i, size-i) which is suffix of // length size-i if (dictionaryContains( str.substr(0, i) ) && wordBreak( str.substr(i, size-i) )) return true ; } // If we have tried all prefixes and // none of them worked return false ; } // Driver program to test above functions int main() { wordBreak( "ilikesamsung" )? cout << "Yes\n" : cout << "No\n" ; wordBreak( "iiiiiiii" )? cout << "Yes\n" : cout << "No\n" ; wordBreak( "" )? cout << "Yes\n" : cout << "No\n" ; wordBreak( "ilikelikeimangoiii" )? cout << "Yes\n" : cout << "No\n" ; wordBreak( "samsungandmango" )? cout << "Yes\n" : cout << "No\n" ; wordBreak( "samsungandmangok" )? cout << "Yes\n" : cout << "No\n" ; return 0; } |
Java
import java.util.*; // Recursive implementation of // word break problem in java public class WordBreakProblem { // set to hold dictionary values private static Set<String> dictionary = new HashSet<>(); public static void main(String []args) { // array of strings to be added in dictionary set. String temp_dictionary[] = { "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" }; // loop to add all strings in dictionary set for (String temp :temp_dictionary) { dictionary.add(temp); } // sample input cases System.out.println(wordBreak( "ilikesamsung" )); System.out.println(wordBreak( "iiiiiiii" )); System.out.println(wordBreak( "" )); System.out.println(wordBreak( "ilikelikeimangoiii" )); System.out.println(wordBreak( "samsungandmango" )); System.out.println(wordBreak( "samsungandmangok" )); } // returns true if the word can be segmented into parts such // that each part is contained in dictionary public static boolean wordBreak(String word) { int size = word.length(); // base case if (size == 0 ) return true ; //else check for all words for ( int i = 1 ; i <= size; i++) { // Now we will first divide the word into two parts , // the prefix will have a length of i and check if it is // present in dictionary ,if yes then we will check for // suffix of length size-i recursively. if both prefix and // suffix are present the word is found in dictionary. if (dictionary.contains(word.substring( 0 ,i)) && wordBreak(word.substring(i,size))) return true ; } // if all cases failed then return false return false ; } } // This code is contributed by Sparsh Singhal |
Python3
# Recursive implementation of # word break problem in Python # returns True if the word can be segmented into parts such # that each part is contained in dictionary def wordBreak(word): global dictionary size = len (word) # base case if (size = = 0 ): return True # else check for all words for i in range ( 1 ,size + 1 ): # Now we will first divide the word into two parts , # the prefix will have a length of i and check if it is # present in dictionary ,if yes then we will check for # suffix of length size-i recursively. if both prefix and # suffix are present the word is found in dictionary. if (word[ 0 :i] in dictionary and wordBreak(word[i: size])): return True # if all cases failed then return False return False # set to hold dictionary values dictionary = set () # array of strings to be added in dictionary set. temp_dictionary = [ "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" ] # loop to add all strings in dictionary set for temp in temp_dictionary: dictionary.add(temp) # sample input cases print ( "Yes" if wordBreak( "ilikesamsung" ) else "No" ) print ( "Yes" if wordBreak( "iiiiiiii" ) else "No" ) print ( "Yes" if wordBreak(" ") else " No") print ( "Yes" if wordBreak( "ilikelikeimangoiii" ) else "No" ) print ( "Yes" if wordBreak( "samsungandmango" ) else "No" ) print ( "Yes" if wordBreak( "samsungandmangok" ) else "No" ) # This code is contributed by shinjanpatra |
Javascript
<script> // Recursive implementation of // word break problem in java // set to hold dictionary values var dictionary = new Set(); // array of strings to be added in dictionary set. var temp_dictionary = [ "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" ]; // loop to add all strings in dictionary set for ( var temp of temp_dictionary) { dictionary.add(temp); } // sample input cases document.write(((wordBreak( "ilikesamsung" ))? "Yes" : "No" )+ "<br/>" ); document.write(((wordBreak( "iiiiiiii" ))? "Yes" : "No" )+ "<br/>" ); document.write(((wordBreak( "" ))? "Yes" : "No" )+ "<br/>" ); document.write(((wordBreak( "ilikelikeimangoiii" ))? "Yes" : "No" )+ "<br/>" ); document.write(((wordBreak( "samsungandmango" ))? "Yes" : "No" )+ "<br/>" ); document.write(((wordBreak( "samsungandmangok" ))? "Yes" : "No" )+ "<br/>" ); // returns true if the word can be segmented into parts such // that each part is contained in dictionary function wordBreak( word) { var size = word.length; // base case if (size == 0) return true ; // else check for all words for ( var i = 1; i <= size; i++) { // Now we will first divide the word into two parts , // the prefix will have a length of i and check if it is // present in dictionary ,if yes then we will check for // suffix of length size-i recursively. if both prefix and // suffix are present the word is found in dictionary. if (dictionary.has(word.substring(0, i)) && wordBreak(word.substring(i, size))) return true ; } // if all cases failed then return false return false ; } // This code is contributed by Rajput-Ji </script> |
Yes Yes Yes Yes Yes No
Dynamic Programming
Why Dynamic Programming? The above problem exhibits overlapping sub-problems. For example, see the following partial recursion tree for string “abcde” in worst case.
CPP
// A Dynamic Programming based program to test whether a given string can // be segmented into space separated words in dictionary #include <iostream> #include <string.h> using namespace std; /* A utility function to check whether a word is present in dictionary or not. An array of strings is used for dictionary. Using array of strings for dictionary is definitely not a good idea. We have used for simplicity of the program*/ int dictionaryContains(string word) { string dictionary[] = { "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" }; int size = sizeof (dictionary)/ sizeof (dictionary[0]); for ( int i = 0; i < size; i++) if (dictionary[i].compare(word) == 0) return true ; return false ; } // Returns true if string can be segmented into space separated // words, otherwise returns false bool wordBreak(string str) { int size = str.size(); if (size == 0) return true ; // Create the DP table to store results of subproblems. The value wb[i] // will be true if str[0..i-1] can be segmented into dictionary words, // otherwise false. bool wb[size+1]; memset (wb, 0, sizeof (wb)); // Initialize all values as false. for ( int i=1; i<=size; i++) { // if wb[i] is false, then check if current prefix can make it true. // Current prefix is "str.substr(0, i)" if (wb[i] == false && dictionaryContains( str.substr(0, i) )) wb[i] = true ; // wb[i] is true, then check for all substrings starting from // (i+1)th character and store their results. if (wb[i] == true ) { // If we reached the last prefix if (i == size) return true ; for ( int j = i+1; j <= size; j++) { // Update wb[j] if it is false and can be updated // Note the parameter passed to dictionaryContains() is // substring starting from index 'i' and length 'j-i' if (wb[j] == false && dictionaryContains( str.substr(i, j-i) )) wb[j] = true ; // If we reached the last character if (j == size && wb[j] == true ) return true ; } } } /* Uncomment these lines to print DP table "wb[]" for (int i = 1; i <= size; i++) cout << " " << wb[i]; */ // If we have tried all prefixes and none of them worked return false ; } // Driver program to test above functions int main() { wordBreak( "ilikesamsung" )? cout << "Yes\n" : cout << "No\n" ; wordBreak( "iiiiiiii" )? cout << "Yes\n" : cout << "No\n" ; wordBreak( "" )? cout << "Yes\n" : cout << "No\n" ; wordBreak( "ilikelikeimangoiii" )? cout << "Yes\n" : cout << "No\n" ; wordBreak( "samsungandmango" )? cout << "Yes\n" : cout << "No\n" ; wordBreak( "samsungandmangok" )? cout << "Yes\n" : cout << "No\n" ; return 0; } |
Java
// A Dynamic Programming based program to test whether a given String can // be segmented into space separated words in dictionary import java.util.*; class GFG{ /* A utility function to check whether a word is present in dictionary or not. An array of Strings is used for dictionary. Using array of Strings for dictionary is definitely not a good idea. We have used for simplicity of the program*/ static boolean dictionaryContains(String word) { String dictionary[] = { "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" }; int size = dictionary.length; for ( int i = 0 ; i < size; i++) if (dictionary[i].compareTo(word) == 0 ) return true ; return false ; } // Returns true if String can be segmented into space separated // words, otherwise returns false static boolean wordBreak(String str) { int size = str.length(); if (size == 0 ) return true ; // Create the DP table to store results of subproblems. The value wb[i] // will be true if str[0..i-1] can be segmented into dictionary words, // otherwise false. boolean []wb = new boolean [size+ 1 ]; for ( int i= 1 ; i<=size; i++) { // if wb[i] is false, then check if current prefix can make it true. // Current prefix is "str.substring(0, i)" if (wb[i] == false && dictionaryContains( str.substring( 0 , i) )) wb[i] = true ; // wb[i] is true, then check for all subStrings starting from // (i+1)th character and store their results. if (wb[i] == true ) { // If we reached the last prefix if (i == size) return true ; for ( int j = i+ 1 ; j <= size; j++) { // Update wb[j] if it is false and can be updated // Note the parameter passed to dictionaryContains() is // subString starting from index 'i' and length 'j-i' if (wb[j] == false && dictionaryContains( str.substring(i, j) )) wb[j] = true ; // If we reached the last character if (j == size && wb[j] == true ) return true ; } } } /* Uncomment these lines to print DP table "wb[]" for (int i = 1; i <= size; i++) System.out.print(" " + wb[i]; */ // If we have tried all prefixes and none of them worked return false ; } // Driver program to test above functions public static void main(String[] args) { if (wordBreak( "ilikesamsung" )) System.out.print( "Yes\n" ); else System.out.print( "No\n" ); if (wordBreak( "iiiiiiii" )) System.out.print( "Yes\n" ); else System.out.print( "No\n" ); if (wordBreak( "" )) System.out.print( "Yes\n" ); else System.out.print( "No\n" ); if (wordBreak( "ilikelikeimangoiii" )) System.out.print( "Yes\n" ); else System.out.print( "No\n" ); if (wordBreak( "samsungandmango" )) System.out.print( "Yes\n" ); else System.out.print( "No\n" ); if (wordBreak( "samsungandmangok" )) System.out.print( "Yes\n" ); else System.out.print( "No\n" ); } } // This code is contributed by Rajput-Ji |
Python3
# A Dynamic Programming based program to test whether a given String can # be segmented into space separated words in dictionary # A utility function to check whether a word is present in dictionary or not. # An array of Strings is used for dictionary. Using array of Strings for # dictionary is definitely not a good idea. We have used for simplicity of the # program def dictionaryContains(word): dictionary = [ "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" ] size = len (dictionary) for i in range (size): if (dictionary[i] = = word): return True return False # Returns True if String can be segmented into space separated # words, otherwise returns False def wordBreak( Str ): size = len ( Str ) if (size = = 0 ): return True # Create the DP table to store results of subproblems. The value wb[i] # will be True if str[0..i-1] can be segmented into dictionary words, # otherwise False. wb = [ False for i in range (size + 1 )] for i in range ( 1 ,size + 1 ): # if wb[i] is False, then check if current prefix can make it True. # Current prefix is "str.substring(0, i)" if (wb[i] = = False and dictionaryContains( Str [ 0 : i])): wb[i] = True # wb[i] is True, then check for all subStrings starting from # (i+1)th character and store their results. if (wb[i] = = True ): # If we reached the last prefix if (i = = size): return True for j in range (i + 1 ,size + 1 ): # Update wb[j] if it is False and can be updated # Note the parameter passed to dictionaryContains() is # subString starting from index 'i' and length 'j-i' if (wb[j] = = False and dictionaryContains( Str [i: j])): wb[j] = True # If we reached the last character if (j = = size and wb[j] = = True ): return True # If we have tried all prefixes and none of them worked return False # Driver program to test above functions if (wordBreak( "ilikesamsung" )): print ( "Yes" ) else : print ( "No" ) if (wordBreak( "iiiiiiii" )): print ( "Yes" ) else : print ( "No" ) if (wordBreak("")): print ( "Yes" ) else : print ( "No" ) if (wordBreak( "ilikelikeimangoiii" )): print ( "Yes" ) else : print ( "No" ) if (wordBreak( "samsungandmango" )): print ( "Yes" ) else : print ( "No" ) if (wordBreak( "samsungandmangok" )): print ( "Yes" ) else : print ( "No" ) # This code is contributed by shinjanpatra |
C#
// A Dynamic Programming based program to test whether a given String can // be segmented into space separated words in dictionary // Include namespace system using System; public class GFG { // A utility function to check whether a word is present in dictionary or not. // An array of Strings is used for dictionary. Using array of Strings for // dictionary is definitely not a good idea. We have used for simplicity of // the program public static bool dictionaryContains(String word) { String[] dictionary = { "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" }; var size = dictionary.Length; for ( int i = 0; i < size; i++) { if ( string .CompareOrdinal(dictionary[i],word) == 0) { return true ; } } return false ; } // Returns true if String can be segmented into space separated // words, otherwise returns false public static bool wordBreak(String str) { var size = str.Length; if (size == 0) { return true ; } // Create the DP table to store results of subproblems. The value wb[i] // will be true if str[0..i-1] can be segmented into dictionary words, // otherwise false. bool [] wb = new bool [size + 1]; for ( int i = 1; i <= size; i++) { // if wb[i] is false, then check if current prefix can make it true. // Current prefix is "str.substring(0, i)" if (wb[i] == false && GFG.dictionaryContains(str.Substring(0,i-0))) { wb[i] = true ; } // wb[i] is true, then check for all subStrings starting from // (i+1)th character and store their results. if (wb[i] == true ) { // If we reached the last prefix if (i == size) { return true ; } for ( int j = i + 1; j <= size; j++) { // Update wb[j] if it is false and can be updated // Note the parameter passed to dictionaryContains() is // subString starting from index 'i' and length 'j-i' if (wb[j] == false && GFG.dictionaryContains(str.Substring(i,j-i))) { wb[j] = true ; } // If we reached the last character if (j == size && wb[j] == true ) { return true ; } } } } // Uncomment these lines to print DP table "wb[]" // for (int i = 1; i <= size; i++) // System.out.print(" " + wb[i]; // If we have tried all prefixes and none of them worked return false ; } // Driver program to test above functions public static void Main(String[] args) { if (GFG.wordBreak( "ilikesamsung" )) { Console.Write( "Yes\n" ); } else { Console.Write( "No\n" ); } if (GFG.wordBreak( "iiiiiiii" )) { Console.Write( "Yes\n" ); } else { Console.Write( "No\n" ); } if (GFG.wordBreak( "" )) { Console.Write( "Yes\n" ); } else { Console.Write( "No\n" ); } if (GFG.wordBreak( "ilikelikeimangoiii" )) { Console.Write( "Yes\n" ); } else { Console.Write( "No\n" ); } if (GFG.wordBreak( "samsungandmango" )) { Console.Write( "Yes\n" ); } else { Console.Write( "No\n" ); } if (GFG.wordBreak( "samsungandmangok" )) { Console.Write( "Yes\n" ); } else { Console.Write( "No\n" ); } } } // This code is contributed by mukulsomukesh |
Javascript
<script> // A Dynamic Programming based program to test whether a given String can // be segmented into space separated words in dictionary /* * A utility function to check whether a word is present in dictionary or not. * An array of Strings is used for dictionary. Using array of Strings for * dictionary is definitely not a good idea. We have used for simplicity of the * program */ function dictionaryContains( word) { var dictionary = [ "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" ]; var size = dictionary.length; for ( var i = 0; i < size; i++) if (dictionary[i]===(word)) return true ; return false ; } // Returns true if String can be segmented into space separated // words, otherwise returns false function wordBreak( str) { var size = str.length; if (size == 0) return true ; // Create the DP table to store results of subproblems. The value wb[i] // will be true if str[0..i-1] can be segmented into dictionary words, // otherwise false. var wb = Array(size + 1).fill( false ); for ( var i = 1; i <= size; i++) { // if wb[i] is false, then check if current prefix can make it true. // Current prefix is "str.substring(0, i)" if (wb[i] == false && dictionaryContains(str.substring(0, i))) wb[i] = true ; // wb[i] is true, then check for all subStrings starting from // (i+1)th character and store their results. if (wb[i] == true ) { // If we reached the last prefix if (i == size) return true ; for (j = i + 1; j <= size; j++) { // Update wb[j] if it is false and can be updated // Note the parameter passed to dictionaryContains() is // subString starting from index 'i' and length 'j-i' if (wb[j] == false && dictionaryContains(str.substring(i, j))) wb[j] = true ; // If we reached the last character if (j == size && wb[j] == true ) return true ; } } } /* * Uncomment these lines to print DP table "wb" for (i = 1; i <= size; * i++) document.write(" " + wb[i]; */ // If we have tried all prefixes and none of them worked return false ; } // Driver program to test above functions if (wordBreak( "ilikesamsung" )) document.write( "Yes<br/>" ); else document.write( "No<br/>" ); if (wordBreak( "iiiiiiii" )) document.write( "Yes<br/>" ); else document.write( "No<br/>" ); if (wordBreak( "" )) document.write( "Yes<br/>" ); else document.write( "No<br/>" ); if (wordBreak( "ilikelikeimangoiii" )) document.write( "Yes<br/>" ); else document.write( "No<br/>" ); if (wordBreak( "samsungandmango" )) document.write( "Yes<br/>" ); else document.write( "No<br/>" ); if (wordBreak( "samsungandmangok" )) document.write( "Yes<br/>" ); else document.write( "No<br/>" ); // This code contributed by Rajput-Ji </script> |
Yes Yes Yes Yes Yes No
Optimized Dynamic Programming:
In this approach, apart from the dp table, we also maintain all the indexes which have matched earlier. Then we will check the substrings from those indexes to the current index. If anyone of that matches then we can divide the string up to that index.
In this program, we are using some extra space. However, its time complexity is O(n*s) where s is the length of the largest string in the dictionary and n is the length of the given string.
CPP
// A Dynamic Programming based program to test // whether a given string can be segmented into // space separated words in dictionary #include <bits/stdc++.h> using namespace std; /* A utility function to check whether a word is present in dictionary or not. An array of strings is used for dictionary. Using array of strings for dictionary is definitely not a good idea. We have used for simplicity of the program*/ int dictionaryContains(string word) { string dictionary[] = { "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" }; int size = sizeof (dictionary) / sizeof (dictionary[0]); for ( int i = 0; i < size; i++) if (dictionary[i].compare(word) == 0) return true ; return false ; } // Returns true if string can be segmented into space // separated words, otherwise returns false bool wordBreak(string s) { int n = s.size(); if (n == 0) return true ; // Create the DP table to store results of subproblems. // The value dp[i] will be true if str[0..i] can be // segmented into dictionary words, otherwise false. vector< bool > dp(n + 1, 0); // Initialize all values // as false. // matched_index array represents the indexes for which // dp[i] is true. Initially only -1 element is present // in this array. vector< int > matched_index; matched_index.push_back(-1); for ( int i = 0; i < n; i++) { int msize = matched_index.size(); // Flag value which tells that a substring matches // with given words or not. int f = 0; // Check all the substring from the indexes matched // earlier. If any of that substring matches than // make flag value = 1; for ( int j = msize - 1; j >= 0; j--) { // sb is substring starting from // matched_index[j] // + 1 and of length i - matched_index[j] string sb = s.substr(matched_index[j] + 1, i - matched_index[j]); if (dictionaryContains(sb)) { f = 1; break ; } } // If substring matches than do dp[i] = 1 and // push that index in matched_index array. if (f == 1) { dp[i] = 1; matched_index.push_back(i); } } return dp[n - 1]; } // Driver code int main() { wordBreak( "ilikesamsung" ) ? cout << "Yes\n" : cout << "No\n" ; wordBreak( "iiiiiiii" ) ? cout << "Yes\n" : cout << "No\n" ; wordBreak( "" ) ? cout << "Yes\n" : cout << "No\n" ; wordBreak( "ilikelikeimangoiii" ) ? cout << "Yes\n" : cout << "No\n" ; wordBreak( "samsungandmango" ) ? cout << "Yes\n" : cout << "No\n" ; wordBreak( "samsungandmangok" ) ? cout << "Yes\n" : cout << "No\n" ; return 0; } |
Java
import java.io.*; import java.util.*; class GFG { public static boolean wordBreak(String s, List<String> dictionary) { // create a dp table to store results of subproblems // value of dp[i] will be true if string s can be segmented // into dictionary words from 0 to i. boolean [] dp = new boolean [s.length() + 1 ]; // dp[0] is true because an empty string can always be segmented. dp[ 0 ] = true ; for ( int i = 0 ; i <= s.length(); i++){ for ( int j = 0 ; j < i; j++){ if (dp[j] && dictionary.contains(s.substring(j, i))){ dp[i] = true ; break ; } } } return dp[s.length()]; } public static void main (String[] args) { String[] dictionary = { "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" }; List<String> dict = new ArrayList<>(); for (String s : dictionary){ dict.add(s); } if (wordBreak( "ilikesamsung" , dict)) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } if (wordBreak( "iiiiiiii" , dict)) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } if (wordBreak( "" , dict)) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } if (wordBreak( "samsungandmango" , dict)) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } if (wordBreak( "ilikesamsung" , dict)) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } if (wordBreak( "samsungandmangok" , dict)) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } } } |
Python3
def wordBreak(s, dictionary): # create a dp table to store results of subproblems # value of dp[i] will be true if string s can be segmented # into dictionary words from 0 to i. dp = [ False for i in range ( len (s) + 1 )] # dp[0] is true because an empty string can always be segmented. dp[ 0 ] = True for i in range ( len (s) + 1 ): for j in range (i): if dp[j] and s[j: i] in dictionary: dp[i] = True break return dp[ len (s)] # driver code dictionary = [ "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" ] dict = set () for s in dictionary: dict .add(s) if (wordBreak( "ilikesamsung" , dict )): print ( "Yes" ) else : print ( "No" ) if (wordBreak( "iiiiiiii" , dict )): print ( "Yes" ) else : print ( "No" ) if (wordBreak("", dict )): print ( "Yes" ) else : print ( "No" ) if (wordBreak( "samsungandmango" , dict )): print ( "Yes" ) else : print ( "No" ) if (wordBreak( "ilikesamsung" , dict )): print ( "Yes" ) else : print ( "No" ) if (wordBreak( "samsungandmangok" , dict )): print ( "Yes" ) else : print ( "No" ) # This code is contributed by shinjanpatra |
Javascript
<script> function wordBreak( s, dictionary) { // create a dp table to store results of subproblems // value of dp[i] will be true if string s can be segmented // into dictionary words from 0 to i. var dp = Array(s.length + 1).fill( false ); // dp[0] is true because an empty string can always be segmented. dp[0] = true ; for ( var i = 0; i <= s.length; i++) { for ( var j = 0; j < i; j++) { if (dp[j] && dictionary.has(s.substring(j, i))) { dp[i] = true ; break ; } } } return dp[s.length]; } var dictionary = [ "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" ]; var dict = new Set(); for ( var s of dictionary) { dict.add(s); } if (wordBreak( "ilikesamsung" , dict)) { document.write( "<br/>Yes" ); } else { document.write( "<br/>No" ); } if (wordBreak( "iiiiiiii" , dict)) { document.write( "<br/>Yes" ); } else { document.write( "<br/>No" ); } if (wordBreak( "" , dict)) { document.write( "<br/>Yes" ); } else { document.write( "<br/>No" ); } if (wordBreak( "samsungandmango" , dict)) { document.write( "<br/>Yes" ); } else { document.write( "<br/>No" ); } if (wordBreak( "ilikesamsung" , dict)) { document.write( "<br/>Yes" ); } else { document.write( "<br/>No" ); } if (wordBreak( "samsungandmangok" , dict)) { document.write( "<br/>Yes" ); } else { document.write( "<br/>No" ); } // This code is contributed by Rajput-Ji </script> |
Yes Yes Yes Yes Yes No
Word Break Problem | (Trie solution)
Exercise:
The above solutions only finds out whether a given string can be segmented or not. Extend the above Dynamic Programming solution to print all possible partitions of input string.
Examples:
Input: ilikeicecreamandmango Output: i like ice cream and man go i like ice cream and mango i like icecream and man go i like icecream and mango Input: ilikesamsungmobile Output: i like sam sung mobile i like samsung mobile
Word Break Problem | (Hashmap solution):
In this approach first, we are storing all the words in a Hashmap. after that we traverse the input string and check if there is a match or not.
C++
#include<bits/stdc++.h> using namespace std; bool CanParseUtil(unordered_map<string, bool >mp, string word) { // if the size id zero that means we completed the word. so we can return true int size = word.size(); if (size == 0) { return true ; } string temp = "" ; for ( int i = 0; i < word.length(); i++) { temp += word[i]; // if the temp exist in hashmap and the parsing operation of the remaining word is true, we can return true. if (mp.find(temp) != mp.end() && CanParseUtil(mp, word.substr(i+1))) { return true ; } } // if there is a mismatch in the dictionary, we can return false. return false ; } string CanParse(vector<string>words, string word) { int start = 0; // store the words in the hashmap unordered_map<string, bool >mp; for ( auto it : words) { mp[it] = true ; } return CanParseUtil(mp,word ) == true ? "YES" : "NO" ; } int main() { vector<string>words{ "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" }; string word = "samsungandmangok" ; cout << CanParse(words, word) << endl; } |
Python3
def CanParseUtil(mp,word): # if the size id zero that means we completed the word. so we can return True size = len (word) if (size = = 0 ): return True temp = "" for i in range ( len (word)): temp + = word[i] # if the temp exist in hashmap and the parsing operation of the remaining word is True, we can return True. if (temp in mp and CanParseUtil(mp, word[i + 1 :])): return True # if there is a mismatch in the dictionary, we can return false. return False def CanParse(words,word): start = 0 # store the words in the hashmap mp = {} for it in words: mp[it] = True return "YES" if CanParseUtil(mp,word ) = = True else "NO" # driver code words = [ "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" ] word = "samsungandmangok" print (CanParse(words, word)) # This code is contributed by shinjanpatra |
Javascript
<script> function CanParseUtil(mp,word) { // if the size id zero that means we completed the word. so we can return true let size = word.length; if (size == 0) { return true ; } let temp = "" ; for (let i = 0; i < word.length; i++) { temp += word[i]; // if the temp exist in hashmap and the parsing operation of the remaining word is true, we can return true. if (mp.has(temp) === true && CanParseUtil(mp, word.substring(i+1))) { return true ; } } // if there is a mismatch in the dictionary, we can return false. return false ; } function CanParse(words,word) { let start = 0; // store the words in the hashmap let mp = new Map(); for (let it of words) { mp.set(it , true ); } return CanParseUtil(mp,word ) == true ? "YES" : "NO" ; } // driver code let words = [ "mobile" , "samsung" , "sam" , "sung" , "man" , "mango" , "icecream" , "and" , "go" , "i" , "like" , "ice" , "cream" ]; let word = "samsungandmangok" ; document.write(CanParse(words, word), "</br>" ); // code is contributed by shinjanpatra </script> |
NO
Refer below post for solution of exercise.
Word Break Problem using Backtracking
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above