Predict the output of following program?
CPP
#include<iostream> using namespace std; class Empty {}; int main() { cout << sizeof (Empty); return 0; } |
1
Size of an empty class is not zero. It is 1 byte generally. It is nonzero to ensure that the two different objects will have different addresses. See the following example.
CPP
#include<iostream> using namespace std; class Empty { }; int main() { Empty a, b; if (&a == &b) cout << "impossible " << endl; else cout << "Fine " << endl; return 0; } |
Fine
For the same reason (different objects should have different addresses), “new” always returns pointers to distinct objects. See the following example.
CPP
#include<iostream> using namespace std; class Empty { }; int main() { Empty* p1 = new Empty; Empty* p2 = new Empty; if (p1 == p2) cout << "impossible " << endl; else cout << "Fine " << endl; return 0; } |
Fine
Now guess the output of following program (This is tricky)
CPP
#include<iostream> using namespace std; class Empty { }; class Derived: Empty { int a; }; int main() { cout << sizeof (Derived); return 0; } |
4
Note that the output is not greater than 4. There is an interesting rule that says that an empty base class need not be represented by a separate byte. So compilers are free to make optimization in case of empty base classes. As an exercise, try the following program on your compiler.
CPP
// Thanks to Venki for suggesting this code. #include <iostream> using namespace std; class Empty { }; class Derived1 : public Empty { }; class Derived2 : virtual public Empty { }; class Derived3 : public Empty { char c; }; class Derived4 : virtual public Empty { char c; }; class Dummy { char c; }; int main() { cout << "sizeof(Empty) " << sizeof (Empty) << endl; cout << "sizeof(Derived1) " << sizeof (Derived1) << endl; cout << "sizeof(Derived2) " << sizeof (Derived2) << endl; cout << "sizeof(Derived3) " << sizeof (Derived3) << endl; cout << "sizeof(Derived4) " << sizeof (Derived4) << endl; cout << "sizeof(Dummy) " << sizeof (Dummy) << endl; return 0; } |
sizeof(Empty) 1 sizeof(Derived1) 1 sizeof(Derived2) 8 sizeof(Derived3) 1 sizeof(Derived4) 16 sizeof(Dummy) 1
Source:
http://www2.research.att.com/~bs/bs_faq2.html
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important C++ Foundation and STL concepts with the C++ Foundation and STL courses at a student-friendly price and become industry ready.