Ways to divide a binary array into sub-arrays such that each sub-array contains exactly one 1

Give an integer array arr[] consisting of elements from the set {0, 1}. The task is to print the number of ways the array can be divided into sub-arrays such that each sub-array contains exactly one 1.

Examples:

Input: arr[] = {1, 0, 1, 0, 1}
Output: 4
Below are the possible ways:

  • {1, 0}, {1, 0}, {1}
  • {1}, {0, 1, 0}, {1}
  • {1, 0}, {1}, {0, 1}
  • {1}, {0, 1}, {0, 1}

Input: arr[] = {0, 0, 0}
Output: 0

Approach:



Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the number of ways
// the array can be divided into sub-arrays
// satisfying the given condition
int countWays(int arr[], int n)
{
  
    int pos[n], p = 0, i;
  
    // for loop for saving the positions of all 1s
    for (i = 0; i < n; i++) {
        if (arr[i] == 1) {
            pos[p] = i + 1;
            p++;
        }
    }
  
    // If array contains only 0s
    if (p == 0)
        return 0;
  
    int ways = 1;
    for (i = 0; i < p - 1; i++) {
        ways *= pos[i + 1] - pos[i];
    }
  
    // Return the total ways
    return ways;
}
  
// Driver code
int main()
{
    int arr[] = { 1, 0, 1, 0, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countWays(arr, n);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
{
      
// Function to return the number of ways
// the array can be divided into sub-arrays
// satisfying the given condition
static int countWays(int arr[], int n)
{
    int pos[] = new int[n]; 
    int p = 0, i;
  
    // for loop for saving the 
    // positions of all 1s
    for (i = 0; i < n; i++) 
    {
        if (arr[i] == 1
        {
            pos[p] = i + 1;
            p++;
        }
    }
  
    // If array contains only 0s
    if (p == 0)
        return 0;
  
    int ways = 1;
    for (i = 0; i < p - 1; i++) 
    {
        ways *= pos[i + 1] - pos[i];
    }
  
    // Return the total ways
    return ways;
}
  
// Driver code
public static void main(String args[])
{
    int[] arr = { 1, 0, 1, 0, 1 };
    int n = arr.length;
    System.out.println(countWays(arr, n));
}
}
  
// This code is contributed 
// by Akanksha Rai
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
# Function to return the number of ways
# the array can be divided into sub-arrays
# satisfying the given condition
def countWays(are, n):
    pos = [0 for i in range(n)]
    p = 0
  
    # for loop for saving the positions
    # of all 1s
    for i in range(n):
        if (arr[i] == 1):
            pos[p] = i + 1
            p += 1
  
    # If array contains only 0s
    if (p == 0):
        return 0
  
    ways = 1
    for i in range(p - 1):
        ways *= pos[i + 1] - pos[i]
  
    # Return the total ways
    return ways
  
# Driver code
if __name__ == '__main__':
    arr = [1, 0, 1, 0, 1]
    n = len(arr)
    print(countWays(arr, n))
      
# This code is contributed by
# Surendra_Gangwar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
      
// Function to return the number of ways
// the array can be divided into sub-arrays
// satisfying the given condition
static int countWays(int[] arr, int n)
{
    int[] pos = new int[n]; 
    int p = 0, i;
  
    // for loop for saving the positions
    // of all 1s
    for (i = 0; i < n; i++) 
    {
        if (arr[i] == 1) 
        {
            pos[p] = i + 1;
            p++;
        }
    }
  
    // If array contains only 0s
    if (p == 0)
        return 0;
  
    int ways = 1;
    for (i = 0; i < p - 1; i++) 
    {
        ways *= pos[i + 1] - pos[i];
    }
  
    // Return the total ways
    return ways;
}
  
// Driver code
public static void Main()
{
    int[] arr = { 1, 0, 1, 0, 1 };
    int n = arr.Length;
    Console.Write(countWays(arr, n));
}
}
  
// This code is contributed 
// by Akanksha Rai
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach 
  
// Function to return the number of ways 
// the array can be divided into sub-arrays 
// satisfying the given condition 
function countWays($arr, $n
    $pos = array_fill(0, $n, 0); 
    $p = 0 ;
  
    // for loop for saving the positions
    // of all 1s 
    for ($i = 0; $i < $n; $i++)
    
        if ($arr[$i] == 1) 
        
            $pos[$p] = $i + 1; 
            $p++; 
        
    
  
    // If array contains only 0s 
    if ($p == 0) 
        return 0; 
  
    $ways = 1; 
    for ($i = 0; $i < $p - 1; $i++) 
    
        $ways *= $pos[$i + 1] - $pos[$i]; 
    
  
    // Return the total ways 
    return $ways
  
// Driver code 
$arr = array(1, 0, 1, 0, 1); 
$n = sizeof($arr); 
echo countWays($arr, $n); 
  
// This code is contributed by Ryuga
?>
chevron_right

Output:
4

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :