Given a skewed tree (Every node has at most one child) with N nodes and K colors. You have to assign a color from 1 to K to each node such that parent and child has different colors. Find the maximum number of ways of coloring the nodes.
Examples:
Input : N = 2, K = 2.
Output :
Let A1 and A2 be the two nodes.
Let A1 is parent of A2.
Colors are Red and Blue.
Case 1: A1 is colored Red
and A2 is colored Blue.
Case 2: A1 is colored Blue
and A2 is colored Red.
No. of ways : 2
Input : N = 3, K = 3.
Output :
A1, A2, A3 are the nodes.
A1 is parent of A2
and A2 is parent of A3.
Let colors be R, B, G.
A1 can choose any three colors
and A2 can choose
any other two colors
and A3 can choose
any other two colors
than its parents.
No. of ways: 12
Note that only the root and children (children, grand children, grand grand children …. and all) should have different colors. The root of the tree can choose any of the K colors so K ways. Every other node can choose other K-1 colors other than its parent. So every node has K-1 choices.
Here, we select the tree as every node as only one child. We can choose any of the K colors for the root of the tree so K ways. And we are left with K-1 colors for its child. So for every child we can assign a color other than its parent. Thus, for each of the N-1 nodes we are left with K-1 colors. Thus the answer is K*(K-1)^(N-1).
We can find the answer by using normal power function which takes O(N) time complexity. But for better time complexity we use Faster Exponentiation function which takes O(log N) time complexity.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
int fastPow( int N, int K)
{
if (K == 0)
return 1;
int temp = fastPow(N, K / 2);
if (K % 2 == 0)
return temp * temp;
else
return N * temp * temp;
}
int countWays( int N, int K)
{
return K * fastPow(K - 1, N - 1);
}
int main()
{
int N = 3, K = 3;
cout << countWays(N, K);
return 0;
}
|
Java
import java.io.*;
class GFG {
static int fastPow( int N, int K)
{
if (K == 0 )
return 1 ;
int temp = fastPow(N, K / 2 );
if (K % 2 == 0 )
return temp * temp;
else
return N * temp * temp;
}
static int countWays( int N, int K)
{
return K * fastPow(K - 1 , N - 1 );
}
public static void main(String[] args)
{
int N = 3 , K = 3 ;
System.out.println(countWays(N, K));
}
}
|
Python3
def fastPow(N, K):
if (K = = 0 ):
return 1 ;
temp = fastPow(N, int (K / 2 ));
if (K % 2 = = 0 ):
return temp * temp;
else :
return N * temp * temp;
def countWays(N, K):
return K * fastPow(K - 1 , N - 1 );
N = 3 ;
K = 3 ;
print (countWays(N, K));
|
C#
using System;
class GFG {
static int fastPow( int N, int K)
{
if (K == 0)
return 1;
int temp = fastPow(N, K / 2);
if (K % 2 == 0)
return temp * temp;
else
return N * temp * temp;
}
static int countWays( int N, int K)
{
return K * fastPow(K - 1, N - 1);
}
public static void Main()
{
int N = 3, K = 3;
Console.WriteLine(countWays(N, K));
}
}
|
PHP
<?php
function fastPow( $N , $K )
{
if ( $K == 0)
return 1;
$temp = fastPow( $N , $K / 2);
if ( $K % 2 == 0)
return $temp * $temp ;
else
return $N * $temp * $temp ;
}
function countWays( $N , $K )
{
return $K * fastPow( $K - 1, $N - 1);
}
$N = 3;
$K = 3;
echo countWays( $N , $K );
?>
|
Javascript
<script>
function fastPow(N, K)
{
if (K == 0)
return 1;
let temp = fastPow(N, Math.floor(K / 2));
if (K % 2 == 0)
return temp * temp;
else
return N * temp * temp;
}
function countWays(N, K)
{
return K * fastPow(K - 1, N - 1);
}
let N = 3, K = 3;
document.write(countWays(N, K));
</script>
|
Javascript
<script>
function fastPow(N, K)
{
if (K == 0 || N == 0)
return 1;
return K *(K - 1)*(N - 1);
}
let N = 3, K = 3;
document.write(fastPow(N, K));
</script>
|
Time Complexity: O(log N)
Auxiliary Space: O(1)
This article is contributed by Harsha Mogali. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...