Ways to choose balls such that at least one ball is chosen
Given an integer N, the task is to find the ways to choose some balls out of the given N balls such that at least one ball is chosen. Since the value can be large so print the value modulo 1000000007.
Example:
Input: N = 2
Output: 3
The three ways are “*.”, “.*” and “**” where ‘*’ denotes
the chosen ball and ‘.’ denotes the ball which didn’t get chosen.
Input: N = 30000
Output: 165890098
Approach: There are N balls and each ball can either be chosen or not chosen. Total number of different configurations is 2 * 2 * 2 * … * N. We can write this as 2N. But the state where no ball is chosen has to be subtracted from the answer. So, the result will be (2N – 1) % 1000000007.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; // Function to return the count of // ways to choose the balls int countWays( int n) { // Calculate (2^n) % MOD int ans = 1; for ( int i = 0; i < n; i++) { ans *= 2; ans %= MOD; } // Subtract the only where // no ball was chosen return ((ans - 1 + MOD) % MOD); } // Driver code int main() { int n = 3; cout << countWays(n); return 0; } |
Java
// Java implementation of the approach class GFG { static int MOD = 1000000007 ; // Function to return the count of // ways to choose the balls static int countWays( int n) { // Calculate (2^n) % MOD int ans = 1 ; for ( int i = 0 ; i < n; i++) { ans *= 2 ; ans %= MOD; } // Subtract the only where // no ball was chosen return ((ans - 1 + MOD) % MOD); } // Driver code public static void main(String[] args) { int n = 3 ; System.out.println(countWays(n)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach MOD = 1000000007 # Function to return the count of # ways to choose the balls def countWays(n): # Return ((2 ^ n)-1) % MOD return ((( 2 * * n) - 1 ) % MOD) # Driver code n = 3 print (countWays(n)) |
C#
// C# implementation of the approach using System; class GFG { static int MOD = 1000000007; // Function to return the count of // ways to choose the balls static int countWays( int n) { // Calculate (2^n) % MOD int ans = 1; for ( int i = 0; i < n; i++) { ans *= 2; ans %= MOD; } // Subtract the only where // no ball was chosen return ((ans - 1 + MOD) % MOD); } // Driver code public static void Main(String[] args) { int n = 3; Console.WriteLine(countWays(n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // javascript implementation of the approach MOD = 1000000007; // Function to return the count of // ways to choose the balls function countWays(n) { // Calculate (2^n) % MOD var ans = 1; for (i = 0; i < n; i++) { ans *= 2; ans %= MOD; } // Subtract the only where // no ball was chosen return ((ans - 1 + MOD) % MOD); } // Driver code var n = 3; document.write(countWays(n)); // This code contributed by gauravrajput1 </script> |
7
Time Complexity : O(n)
Auxiliary Space : O(1)
Please Login to comment...