Skip to content
Related Articles

Related Articles

Improve Article

Ways to apply LEFT, RIGHT, MID in Pandas

  • Last Updated : 28 Jul, 2020
Geek Week

Many times we need to extract specific characters present within a string in Pandas data frame. In order to solve this issue, we have concept of Left, Right, and Mid in pandas.

Example 1: Extract Characters From the Left

Python3




# importing pandas library
import pandas as pd
  
# creating and initializing a list 
Cars = ['1000-BMW','2000-Audi','3000-Volkswagen',
        '4000-Datsun','5000-Toyota','6000-Maruti Suzuki']
  
# creating a pandas dataframe
df = pd.DataFrame(Cars, columns= ['Model_name'])
  
# Extracting characters from right side
# using slicing and storing result in 
# 'Left'
Left = df['Model_name'].str[:4]
  
print(Left)

Output :

0    1000
1    2000
2    3000
3    4000
4    5000
5    6000
Name: Model_name, dtype: object

Example 2: Extract Characters From the Right



Python3




# importing pandas library
import pandas as pd
  
# creating and initializing a list 
Cars = ['ID-11111-BMW','ID-22222-Volkswagen',
        'ID-33333-Toyota','ID-44444-Hyundai ',
        'ID-55555-Datsun','ID-66666-Mercedes']
  
# creating a pandas dataframe
df = pd.DataFrame(Cars, columns= ['Model_name'])
  
# Extracting characters from left side using
# slicing and storing result in 'Right'
Right = df['Model_name'].str[4:8]
  
print (Right)

Output :

0    11111
1    22222
2    33333
3    44444
4    55555
5    66666
Name: Model_name, dtype: object

Example 3: Extract Characters From the Middle

Python3




# importing pandas library
import pandas as pd
  
# creating and initializing a list 
Cars = ['ID-11111-BMW','ID-22222-Volkswagen',
        'ID-33333-Toyota','ID-44444-Hyundai ',
        'ID-55555-Datsun','ID-66666-Mercedes']
  
# creating a pandas dataframe
df = pd.DataFrame(Cars, columns= ['Model_name'])
  
# Extracting characters from Middle using 
# slicing and storing result in 'Mid'
Mid = df['Model_name'].str[4:8]
  
print (Mid)

Output :

0    1111
1    2222
2    3333
3    4444
4    5555
5    6666
Name: Model_name, dtype: object

Example 4 : Before a symbol using str.split() function

Python3




# importing pandas library
import pandas as pd
  
# creating and initializing a list 
Cars = ['1000-BMW','2000-Audi',
        '3000-Volkswagen','4000-Datsun',
        '5000-Toyota','6000-Maruti Suzuki']
  
# creating a pandas dataframe
df = pd.DataFrame(Cars, columns= ['Model_name'])
  
# Extracting characters before symbol "-"
# using srt.strip() and str[0]
# and storing result to 'Before_symbol'
Before_symbol = df['Model_name'].str.split('-').str[0]
  
print (Before_symbol)

Output :

0    1000
1    2000
2    3000
3    4000
4    5000
5    6000
Name: Model_name, dtype: object

Example 5 :  Between identical symbols using str.split() function

Python3




# importing pandas library
import pandas as pd
  
# creating and initializing a list 
Cars = ['M3-1906-BMW','M5-2096-Audi',
        'M11-3096-Volkswagen','M9-4096-Datsun',
        'M8-5096-Toyota','M23-6096-Maruti Suzuki']
  
# creating a pandas dataframe
df = pd.DataFrame(Cars, columns= ['Model_name'])
  
# Extracting characters between symbol "-"
# using srt.strip() and str[1]
# and storing result to 'Before_symbol'
BetweenTwoSymbols = df['Model_name'].str.split('-').str[1]
  
print (BetweenTwoSymbols)

Output :

0    1906
1    2096
2    3096
3    4096
4    5096
5    6096
Name: Model_name, dtype: object

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :