Skip to content
Related Articles

Related Articles

Improve Article

Ways of selecting men and women from a group to make a team

  • Last Updated : 22 Mar, 2021

Given four integers n, w, m and k where, 
 

  • m is the total number of men.
  • w is the total number of women.
  • n is the total number of people that need to be selected to form the team.
  • k is the minimum number of men that have to be selected.

The task is to find the number of ways in which the team can be formed.
Examples: 
 

Input: m = 2, w = 2, n = 3, k = 1 
Output:
There are 2 men, 2 women. We need to make a team of size 3 with at least one man and one woman. We can make the team in following ways. 
m1 m2 w1 
m1 w1 w2 
m2 w1 w2 
m1 m2 w2
Input: m = 7, w = 6, n = 5, k = 3 
Output: 756
Input: m = 5, w = 6, n = 6, k = 3 
Output: 281 
 

 

Approach: Since, we have to take at least k men. 
 



Totals ways = Ways when ‘k’ men are selected + Ways when ‘k+1’ men are selected + … + when ‘n’ men are selected


Taking the first example from above where out of 7 men and 6 women, total 5 people need to be selected with at least 3 men, 
Number of ways = (7C3 x 6C2) + (7C4 x 6C1) + (7C5) 
= 7 x 6 x 5 x 6 x 5 + (7C3 x 6C1) + (7C2) 
= 525 + 7 x 6 x 5 x 6 + 7 x 6 
= (525 + 210 + 21) 
= 756
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Returns factorial
// of the number
int fact(int n)
{
    int fact = 1;
    for (int i = 2; i <= n; i++)
        fact *= i;
    return fact;
}
 
// Function to calculate ncr
int ncr(int n, int r)
{
    int ncr = fact(n) / (fact(r) * fact(n - r));
    return ncr;
}
 
// Function to calculate
// the total possible ways
int ways(int m, int w, int n, int k)
{
 
    int ans = 0;
    while (m >= k) {
        ans += ncr(m, k) * ncr(w, n - k);
        k += 1;
    }
 
    return ans;
}
 
// Driver code
int main()
{
 
    int m, w, n, k;
    m = 7;
    w = 6;
    n = 5;
    k = 3;
    cout << ways(m, w, n, k);
}

Java




// Java implementation of the approach
 
import java.io.*;
 
class GFG {
 
// Returns factorial
// of the number
static int fact(int n)
{
    int fact = 1;
    for (int i = 2; i <= n; i++)
        fact *= i;
    return fact;
}
 
// Function to calculate ncr
static int ncr(int n, int r)
{
    int ncr = fact(n) / (fact(r) * fact(n - r));
    return ncr;
}
 
// Function to calculate
// the total possible ways
static int ways(int m, int w, int n, int k)
{
 
    int ans = 0;
    while (m >= k) {
        ans += ncr(m, k) * ncr(w, n - k);
        k += 1;
    }
 
    return ans;
}
 
// Driver code
    public static void main (String[] args) {
         
    int m, w, n, k;
    m = 7;
    w = 6;
    n = 5;
    k = 3;
    System.out.println( ways(m, w, n, k));
    }
}
// This Code is contributed
// by shs

Python3




# Python 3 implementation of the approach
 
# Returns factorial of the number
def fact(n):
    fact = 1
    for i in range(2, n + 1):
        fact *= i
    return fact
 
# Function to calculate ncr
def ncr(n, r):
    ncr = fact(n) // (fact(r) * fact(n - r))
    return ncr
 
# Function to calculate
# the total possible ways
def ways(m, w, n, k):
    ans = 0
    while (m >= k):
        ans += ncr(m, k) * ncr(w, n - k)
        k += 1
 
    return ans;
 
# Driver code
m = 7
w = 6
n = 5
k = 3
print(ways(m, w, n, k))
 
# This code is contributed by sahishelangia

C#




// C# implementation of the approach
 
class GFG {
 
// Returns factorial
// of the number
static int fact(int n)
{
    int fact = 1;
    for (int i = 2; i <= n; i++)
        fact *= i;
    return fact;
}
 
// Function to calculate ncr
static int ncr(int n, int r)
{
    int ncr = fact(n) / (fact(r) * fact(n - r));
    return ncr;
}
 
// Function to calculate
// the total possible ways
static int ways(int m, int w, int n, int k)
{
 
    int ans = 0;
    while (m >= k) {
        ans += ncr(m, k) * ncr(w, n - k);
        k += 1;
    }
 
    return ans;
}
 
// Driver code
    static void Main () {
         
    int m, w, n, k;
    m = 7;
    w = 6;
    n = 5;
    k = 3;
    System.Console.WriteLine( ways(m, w, n, k));
    }
}
// This Code is contributed by mits

PHP




<?php
// PHP implementation of the approach
 
// Returns factorial of the number
function fact($n)
{
    $fact = 1;
    for ($i = 2; $i <= $n; $i++)
        $fact *= $i;
    return $fact;
}
 
// Function to calculate ncr
function ncr($n, $r)
{
    $ncr = (int)(fact($n) / (fact($r) *
                 fact($n - $r)));
    return $ncr;
}
 
// Function to calculate the total
// possible ways
function ways($m, $w, $n, $k)
{
    $ans = 0;
    while ($m >= $k)
    {
        $ans += ncr($m, $k) *
                ncr($w, $n - $k);
        $k += 1;
    }
 
    return $ans;
}
 
// Driver code
$m = 7;
$w = 6;
$n = 5;
$k = 3;
echo ways($m, $w, $n, $k);
 
// This Code is contributed
// by Mukul Singh

Javascript




<script>
// javascript implementation of the approach
 
// Returns factorial
// of the number
function fact(n)
{
    var fact = 1;
    for (i = 2; i <= n; i++)
        fact *= i;
    return fact;
}
 
// Function to calculate ncr
function ncr(n , r)
{
    var ncr = fact(n) / (fact(r) * fact(n - r));
    return parseInt(ncr);
}
 
// Function to calculate
// the total possible ways
function ways(m , w , n , k)
{
 
    var ans = 0;
    while (m >= k)
    {
        ans += ncr(m, k) * ncr(w, n - k);
        k += 1;
    }
 
    return parseInt(ans);
}
 
// Driver code
var m, w, n, k;
m = 7;
w = 6;
n = 5;
k = 3;
document.write( ways(m, w, n, k));
 
// This code is contributed by 29AjayKumar.
</script>
Output: 
756

 

Further Optimization : The above code can be optimized using faster algorithms for binomial coefficient computation.
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :