# Ways to multiply n elements with an associative operation

Given a number n, find the number of ways to multiply n elements with an associative operation.

Examples :

```Input : 2
Output : 2
For a and b there are two ways to multiply them.
1. (a * b)
2. (b * a)

Input : 3
Output : 12```

Explanation(Example 2) :

```For a, b and c there are 12 ways to multiply them.
1.  ((a * b) * c)     2.  (a * (b * c))
3.  ((a * c) * b)     4.  (a * (c * b))
5.  ((b * a) * c)     6.  (b * (a * c))
7.  ((b * c) * a)     8.  (b * (c * a))
9.  ((c * a) * b)     10.  (c * (a * b))
11.  ((c * b) * a)    12.  (c * (b * a))```

Approach: First, we try to find out the recurrence relation. From above examples, we can see h(1) = 1, h(2) = 2, h(3) = 12 . Now, for n elements there will be n – 1 multiplications and n – 1 parentheses. And, (a1, a2, …, an ) can be obtained from (a1, a2, …, a(n – 1)) in exactly one of the two ways :

1. Take a multiplication (a1, a2, …, a(n – 1))(which has n – 2 multiplications and n – 2 parentheses) and insert the nth element ‘an’ on either side of either factor in one of the n – 2 multiplications. Thus, for each scheme for n – 1 numbers gives 2 * 2 * (n – 2) = 4 * (n – 2) schemes for n numbers in this way.
2. Take a multiplication scheme for (a1, a2, .., a(n-1)) and multiply on left or right by (‘an’). Thus, for each scheme for n – 1 numbers gives two schemes for n numbers in this way.

So after adding above two, we get, h(n) = (4 * n – 8 + 2) * h(n – 1), h(n) = (4 * n – 6) * h(n – 1). This recurrence relation with same initial value is satisfied by the pseudo-Catalan number. Hence, h(n) = (2 * n – 2)! / (n – 1)!

## C++

 `// C++ code to find number of ways to multiply n ` `// elements with an associative operation` `# include ` `using` `namespace` `std;`   `// Function to find the required factorial` `int` `fact(``int` `n)` `{` `    ``if` `(n == 0 || n == 1)    ` `        ``return` `1 ;`   `    ``int` `ans = 1;   ` `    ``for` `(``int` `i = 1 ; i <= n; i++)    ` `        ``ans = ans * i ; `   `    ``return` `ans ;` `}`   `// Function to find nCr` `int` `nCr(``int` `n, ``int` `r)` `{` `    ``int` `Nr = n , Dr = 1 , ans = 1;` `    ``for` `(``int` `i = 1 ; i <= r ; i++ ) {` `        ``ans = ( ans * Nr ) / ( Dr ) ;` `        ``Nr-- ;` `        ``Dr++ ;` `    ``}` `    ``return` `ans ;` `}`   `// function to find the number of ways` `int` `solve ( ``int` `n )` `{` `    ``int` `N = 2*n - 2 ;` `    ``int` `R = n - 1 ;    ` `    ``return` `nCr (N, R) * fact(n - 1) ;` `}`   `// Driver code` `int` `main()` `{` `    ``int` `n = 6 ;` `    ``cout << solve (n) ;    ` `    ``return` `0 ;` `}`

## Java

 `// Java code to find number of ` `// ways to multiply n elements ` `// with an associative operation` `import` `java.io.*;`   `class` `GFG ` `{` `// Function to find the` `// required factorial` `static` `int` `fact(``int` `n)` `{` `    ``if` `(n == ``0` `|| n == ``1``) ` `        ``return` `1` `;`   `    ``int` `ans = ``1``; ` `    ``for` `(``int` `i = ``1` `; i <= n; i++) ` `        ``ans = ans * i ; `   `    ``return` `ans ;` `}`   `// Function to find nCr` `static` `int` `nCr(``int` `n, ``int` `r)` `{` `    ``int` `Nr = n , Dr = ``1` `, ans = ``1``;` `    ``for` `(``int` `i = ``1` `; i <= r ; i++ ) ` `    ``{` `        ``ans = ( ans * Nr ) / ( Dr ) ;` `        ``Nr-- ;` `        ``Dr++ ;` `    ``}` `    ``return` `ans ;` `}`   `// function to find` `// the number of ways` `static` `int` `solve ( ``int` `n )` `{` `    ``int` `N = ``2` `* n - ``2` `;` `    ``int` `R = n - ``1` `; ` `    ``return` `nCr (N, R) * fact(n - ``1``) ;` `}`   `// Driver Code` `public` `static` `void` `main (String[] args) ` `{` `int` `n = ``6` `;` `System.out.println( solve (n)) ; ` `}` `}`   `// This code is contributed by anuj_67.`

## Python3

 `# Python3 code to find number` `# of ways to multiply n ` `# elements with an` `# associative operation`   `# Function to find the` `# required factorial` `def` `fact(n):` `    ``if` `(n ``=``=` `0` `or` `n ``=``=` `1``): ` `        ``return` `1``;`   `    ``ans ``=` `1``; ` `    ``for` `i ``in` `range``(``1``, n ``+` `1``): ` `        ``ans ``=` `ans ``*` `i; `   `    ``return` `ans;`   `# Function to find nCr` `def` `nCr(n, r):` `    ``Nr ``=` `n ; Dr ``=` `1` `; ans ``=` `1``;` `    ``for` `i ``in` `range``(``1``, r ``+` `1``):` `        ``ans ``=` `int``((ans ``*` `Nr) ``/` `(Dr));` `        ``Nr ``=` `Nr ``-` `1``;` `        ``Dr ``=` `Dr ``+` `1``;` `    ``return` `ans;`   `# function to find ` `# the number of ways` `def` `solve ( n ):` `    ``N ``=` `2``*` `n ``-` `2``;` `    ``R ``=` `n ``-` `1` `; ` `    ``return` `(nCr (N, R) ``*` `            ``fact(n ``-` `1``));`   `# Driver code` `n ``=` `6` `;` `print``(solve (n) ); `   `# This code is contributed` `# by mits`

## C#

 `// C# code to find number of ` `// ways to multiply n elements ` `// with an associative operation` `using` `System;`   `class` `GFG {` `    `  `    ``// Function to find the` `    ``// required factorial` `    ``static` `int` `fact(``int` `n)` `    ``{` `        ``if` `(n == 0 || n == 1) ` `            ``return` `1 ;` `    `  `        ``int` `ans = 1; ` `        ``for` `(``int` `i = 1 ; i <= n; i++) ` `            ``ans = ans * i ; ` `    `  `        ``return` `ans ;` `    ``}` `    `  `    ``// Function to find nCr` `    ``static` `int` `nCr(``int` `n, ``int` `r)` `    ``{` `        ``int` `Nr = n , Dr = 1 , ans = 1;` `        ``for` `(``int` `i = 1 ; i <= r ; i++ ) ` `        ``{` `            ``ans = ( ans * Nr ) / ( Dr ) ;` `            ``Nr-- ;` `            ``Dr++ ;` `        ``}` `        ``return` `ans ;` `    ``}` `    `  `    ``// function to find` `    ``// the number of ways` `    ``static` `int` `solve ( ``int` `n )` `    ``{` `        ``int` `N = 2 * n - 2 ;` `        ``int` `R = n - 1 ; ` `        ``return` `nCr (N, R) * fact(n - 1) ;` `    ``}` `    `  `    ``// Driver Code` `    ``public` `static` `void` `Main () ` `    ``{` `        ``int` `n = 6 ;` `        ``Console.WriteLine( solve (n)) ; ` `    ``}` `}`   `// This code is contributed by anuj_67.`

## PHP

 ``

## Javascript

 ``

Output :

`30240`

Time Complexity: O(n).
Auxiliary Space: O(1).

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next