Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library.
The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
#Sample Code
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np # make an agg figure fig, ax = plt.subplots() ax.plot([ 1 , 2 , 3 ]) ax.set_title( 'matplotlib.axes.Axes function' ) fig.canvas.draw() plt.show() |
Output:
Violinplot using Axes Class
The Axes.violinplot() function in axes module of matplotlib library is used to make a violin plot for each column of dataset or each vector in sequence dataset.
Syntax:
Axes.violinplot(self, dataset, positions=None, vert=True, widths=0.5, showmeans=False, showextrema=True, showmedians=False, points=100, bw_method=None, *, data=None)
Parameters: This method accept the following parameters that are described below:
- dataset: This parameter is a sequence of data.
- positions : This parameter is used to sets the positions of the violins.
- vert: This parameter is an optional parameter and contain boolean value. It makes the vertical violin plot if true.Otherwise horizontal.
- widths: This parameter is used to sets the width of each violin either with a scalar or a sequence.
- showmeans : This parameter contain boolean value. It is used to toggle rendering of the means.
- showextrema : This parameter contain boolean value. It is used to toggle rendering of the extrema.
- showmedians : This parameter contain boolean value. It is used to toggle rendering of the medians.
- points : This parameter is used to defines the number of points to evaluate each of the gaussian kernel density estimations at.
Returns: This returns the following:
- result :This returns the dictionary which maps each component of the violinplot to a list of the matplotlib.collections instances.
Below examples illustrate the matplotlib.axes.Axes.violinplot() function in matplotlib.axes:
Example-1:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np # create test data np.random.seed( 10 * * 7 ) data = np.random.normal( 0 , 5 , 100 ) fig, ax1 = plt.subplots() val = ax1.violinplot(data) ax1.set_title( 'matplotlib.axes.Axes.violinplot() Example' ) plt.show() |
Output:
Example-2:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np # create test data np.random.seed( 10 * * 7 ) data = [ sorted (np.random.normal( 0 , std, 100 )) for std in range ( 1 , 5 )] fig, ax1 = plt.subplots() val = ax1.violinplot(data) ax1.set_ylabel( 'Result' ) ax1.set_xlabel( 'Domain Name' ) for i in val[ 'bodies' ]: i.set_facecolor( 'green' ) i.set_alpha( 1 ) ax1.set_title( 'matplotlib.axes.Axes.violinplot() Example' ) plt.show() |
Output:
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.