# Vieta’s Formulas

Vieta’s formula relates the coefficients of polynomial to the sum and product of their roots, as well as the products of the roots taken in groups. Vieta’s formula describes the relationship of the roots of a polynomial with its coefficients. Consider the following example to find a polynomial with given roots. (Only discuss real-valued polynomials, i.e. the coefficients of polynomials are real numbers). Let’s take a quadratic polynomial. Given two real roots and , then find a polynomial.

Consider the polynomial . Given the roots, we can also write it as .

Since both equation represents the same polynomial, so equate both polynomial Simplifying the above equation, we get Comparing the coefficients of both sides, we get

For , ,

For , ,

For constant term, ,

Which gives, ,  Equation (1) and (2) are known as Vieta’s Formulas for a second degree polynomial.
In general, for an degree polynomial, there are n different Vieta’s Formulas. They can be written in a condensed form as

For  The following examples illustrate the use of Vieta’s formula to solve a problem.

Examples:

Input : n = 2
roots = {-3, 2}
Output : Polynomial coefficients: 1, 1, -5

Input : n = 4
roots = {-1, 2, -3, 7}
Output : Polynomial coefficients: 1, -5, -19, 29, 42


## C++

 // C++ program to implement vieta formula   // to calculate polynomial coefficients.  #include  using namespace std;     // Function to calculate polynomial   // coefficients.  void vietaFormula(int roots[], int n)  {      // Declare an array for      // polynomial coefficient.      int coeff[n + 1];         // Set all coefficients as zero initially      memset(coeff, 0, sizeof(coeff));             // Set highest order coefficient as 1      coeff[n] = 1;         for (int i = 1; i <= n; i++) {          for (int j = n - i - 1; j < n; j++) {              coeff[j] = coeff[j] + (-1) *                   roots[i - 1] * coeff[j + 1];          }      }         cout << "Polynomial Coefficients: ";      for (int i = n; i >= 0; i--) {          cout << coeff[i] << " ";      }  }     // Driver code  int main()  {      // Degree of required polynomial      int n = 4;             // Initialise an array by      // root of polynomial      int roots[] = { -1, 2, -3, 7 };             // Function call      vietaFormula(roots, n);             return 0;  }

## Java

 // Java program to implement vieta formula   // to calculate polynomial coefficients.  import java.util.Arrays;     class GFG  {     // Function to calculate polynomial   // coefficients.  static void vietaFormula(int roots[], int n)  {      // Declare an array for      // polynomial coefficient.      int coeff[] = new int[++n + 1];      Arrays.fill(coeff, 0);             // Set highest order coefficient as 1      coeff[n] = 1;         for (int i = 1; i 0; i--)       {          System.out.print(coeff[i] + " ");      }  }     // Driver code  public static void main(String[] args)  {      // Degree of required polynomial      int n = 4;             // Initialise an array by      // root of polynomial      int roots[] = { -1, 2, -3, 7 };             // Function call      vietaFormula(roots, n);      }  }     /* This code contributed by PrinciRaj1992 */

## Python3

 # Python3 program to implement   # Vieta's formula to calculate  # polynomial coefficients.  def vietaFormula(roots, n):             # Declare an array for      # polynomial coefficient.      coeff =  * (n + 1)             # Set Highest Order       # Coefficient as 1      coeff[n] = 1     for i in range(1, n + 1):          for j in range(n - i - 1, n):              coeff[j] += ((-1) * roots[i - 1] *                                 coeff[j + 1])             # Reverse Array       coeff = coeff[::-1]              print("Polynomial Coefficients : ", end = "")             # Print Coefficients      for i in coeff:           print(i, end = " ")      print()     # Driver Code  if __name__ == "__main__":             # Degree of Polynomial      n = 4            # Initialise an array by      # root of polynomial      roots = [-1, 2, -3, 7]              # Function call      vietaFormula(roots, n)         # This code is contributed  # by Arihant Joshi

## C#

 // C# program to implement vieta formula   // to calculate polynomial coefficients.  using System;         class GFG  {     // Function to calculate polynomial   // coefficients.  static void vietaFormula(int []roots, int n)  {      // Declare an array for      // polynomial coefficient.      int []coeff = new int[++n + 1];             // Set highest order coefficient as 1      coeff[n] = 1;         for (int i = 1; i 0; i--)       {          Console.Write(coeff[i] + " ");      }  }     // Driver code  public static void Main(String[] args)  {      // Degree of required polynomial      int n = 4;             // Initialise an array by      // root of polynomial      int []roots = { -1, 2, -3, 7 };             // Function call      vietaFormula(roots, n);  }  }     // This code has been contributed by 29AjayKumar

## PHP

 = 0; $i--)   {   echo $coeff[$i]. " ";   }  }    // Driver code    // Degree of required polynomial  $n = 4;     // Initialise an array by  // root of polynomial  $roots = array(-1, 2, -3, 7);    // Function call  vietaFormula($roots, \$n);     // This code is contributed by mits  ?>

Output:

Polynomial Coefficients: 1 -5 -19 29 42


Time Complexity : .

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.