# Using NumPy to Convert Array Elements to Float Type

There are often times when it is necessary for us to convert an array in Python to a differing type. One of these times would be when given an array and having to convert it to an array of float types. This is often useful when conducting data analysis and there are a variety of ways of doing this. Whilst iterating through the array and using Python’s inbuilt `float()` casting function is perfectly valid, NumPy offers us some even more elegant ways to conduct the same procedure.

Method 1 : Here, we can utilize the `astype()` function that is offered by NumPy. This function creates another copy of the initial array with the specified data type, float in this case, and we can then assign this copy to a specific identifier, which is convertedArray. Note that the data type is specified in terms of NumPy, mainly because of the constraints of the NumPy `astype()` function, which will only take NumPy types as parameters.

 `# Process utilizing astype() function ` ` `  `# Import NumPy Library ` `import` `numpy as np ` ` `  `# Initialize our Array with Strings ` `# The String Type is denoted by the quotes "" ` `initialArray ``=` `[``"1.1"``, ``"2.2"``, ``"3.3"``, ``"4.4"``] ` ` `  `# Convert initial Array to NumPy Array ` `# Use the array() function ` `sampleArray ``=` `np.array(initialArray) ` ` `  `# Print our Initial Array ` `print``(``"Our initial array: "``, ``str``(initialArray)) ` `print``(``"Original type: "` `+` `str``(``type``(initialArray[``0``]))) ` ` `  `# Actual Conversion of Array ` `# Note usage of astype() function ` `# np.float can be changed to represent differing types ` `convertedArray ``=` `sampleArray.astype(np.``float``) ` ` `  `# Print our final result ` `# Note that usage of str() is due to Python conventions ` `print``(``"Our final array: "``, ``str``(convertedArray)) ` `print``(``"Final type: "` `+` `str``(``type``(convertedArray[``0``]))) `

Output :

```Our initial array:  ['1.1', '2.2', '3.3', '4.4']
Original type: <class 'numpy.str_'>
Our final array:  [1.1 2.2 3.3 4.4]
Final type: <class 'numpy.float64'>
```

Method 2 : Here, we will utilize the `asarray()` function that is offered by NumPy.

 `# Process utilizing asarray() function ` ` `  `# Import NumPy Library ` `import` `numpy as np ` ` `  `# Initialize our array ` `# Note, once again, that this is of type String ` `# Non-NumPy arrays can be used ` `initialArray ``=` `np.array([``"1.1"``, ``"2.2"``, ``"3.3"``, ``"4.4"``]) ` ` `  `# Print our initial array ` `print``(``"Our Initial Array: "``, ``str``(initialArray)) ` `print``(``"Original type: "` `+` `str``(``type``(initialArray[``0``]))) ` ` `  `# Actual conversion of array ` `# Note that we utilize np.float64 as the finalize data type ` `finalArray ``=` `np.asarray(initialArray, dtype ``=` `np.float64,  ` `                        ``order ``=``'C'``) ` ` `  `# Print our converted array ` `print``(``"Our Final Array: "``, ``str``(finalArray)) ` `print``(``"Final type: "` `+` `str``(``type``(finalArray[``0``]))) `

Output :

```Our initial array:  ['1.1', '2.2', '3.3', '4.4']
Original type: <class 'numpy.str_'>
Our final array:  [1.1 2.2 3.3 4.4]
Final type: <class 'numpy.float64'>
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.