# Two Clique Problem (Check if Graph can be divided in two Cliques)

A Clique is a subgraph of graph such that all vertcies in subgraph are completely connected with each other. Given a Graph, find if it can be divided into two Cliques.

Examples:

```Input : G[][] =   {{0, 1, 1, 0, 0},
{1, 0, 1, 1, 0},
{1, 1, 0, 0, 0},
{0, 1, 0, 0, 1},
{0, 0, 0, 1, 0}};
Output : Yes ```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

This problem looks tricky at first, but has a simple and interesting solution. A graph can be divided in two cliques if its complement graph is Bipartitie. So below are two steps to find if graph can be divided in two Cliques or not.

1. Find complement of Graph. Below is complement graph is above shown graph. In complement, all original edges are removed. And the vertices which did not have an edge between them, now have an edge connecting them. 2. Return true if complement is Bipartite, else false. Above shown graph is Bipartite. Checking whether a Graph is Biparitite or no is discussed here.

How does this work?
If complement is Bipartite, then graph can be divided into two sets U and V such that there is no edge connecting to vertices of same set. This means in original graph, these sets U and V are completely connected. Hence original graph could be divided in two Cliques.

Implementation :
Below is implementation of above steps.

## C++

 `// C++ program to find out whether a given graph can be ` `// converted to two Cliques or not. ` `#include ` `using` `namespace` `std; ` ` `  `const` `int` `V = 5; ` ` `  `// This function returns true if subgraph reachable from ` `// src is Bipartite or not. ` `bool` `isBipartiteUtil(``int` `G[][V], ``int` `src, ``int` `colorArr[]) ` `{ ` `    ``colorArr[src] = 1; ` ` `  `    ``// Create a queue (FIFO) of vertex numbers and enqueue ` `    ``// source vertex for BFS traversal ` `    ``queue <``int``> q; ` `    ``q.push(src); ` ` `  `    ``// Run while there are vertices in queue (Similar to BFS) ` `    ``while` `(!q.empty()) ` `    ``{ ` `        ``// Dequeue a vertex from queue ` `        ``int` `u = q.front(); ` `        ``q.pop(); ` ` `  `        ``// Find all non-colored adjacent vertices ` `        ``for` `(``int` `v = 0; v < V; ++v) ` `        ``{ ` `            ``// An edge from u to v exists and destination ` `            ``// v is not colored ` `            ``if` `(G[u][v] && colorArr[v] == -1) ` `            ``{ ` `                ``// Assign alternate color to this adjacent ` `                ``// v of u ` `                ``colorArr[v] = 1 - colorArr[u]; ` `                ``q.push(v); ` `            ``} ` ` `  `            ``// An edge from u to v exists and destination ` `            ``// v is colored with same color as u ` `            ``else` `if` `(G[u][v] && colorArr[v] == colorArr[u]) ` `                ``return` `false``; ` `        ``} ` `    ``} ` ` `  `    ``// If we reach here, then all adjacent vertices can ` `    ``// be colored with alternate color ` `    ``return` `true``; ` `} ` ` `  `// Returns true if a Graph G[][] is Bipartite or not. Note ` `// that G may not be connected. ` `bool` `isBipartite(``int` `G[][V]) ` `{ ` `    ``// Create a color array to store colors assigned ` `    ``// to all veritces. Vertex number is used as index in ` `    ``// this array. The value '-1' of  colorArr[i] ` `    ``// is used to indicate that no color is assigned to ` `    ``// vertex 'i'.  The value 1 is used to indicate first ` `    ``// color is assigned and value 0 indicates ` `    ``// second color is assigned. ` `    ``int` `colorArr[V]; ` `    ``for` `(``int` `i = 0; i < V; ++i) ` `        ``colorArr[i] = -1; ` ` `  `    ``// One by one check all not yet colored vertices. ` `    ``for` `(``int` `i = 0; i < V; i++) ` `        ``if` `(colorArr[i] == -1) ` `            ``if` `(isBipartiteUtil(G, i, colorArr) == ``false``) ` `                ``return` `false``; ` ` `  `    ``return` `true``; ` `} ` ` `  `// Returns true if G can be divided into ` `// two Cliques, else false. ` `bool` `canBeDividedinTwoCliques(``int` `G[][V]) ` `{ ` `    ``// Find complement of G[][] ` `    ``// All values are complemented except ` `    ``// diagonal ones ` `    ``int` `GC[V][V]; ` `    ``for` `(``int` `i=0; i

## Java

 `// Java program to find out whether a given graph can be ` `// converted to two Cliques or not. ` `import` `java.util.ArrayDeque; ` `import` `java.util.Deque; ` `class` `GFG { ` `static` `int` `V = ``5``; ` `  `  `// This function returns true if subgraph reachable from ` `// src is Bipartite or not. ` `static` `boolean` `isBipartiteUtil(``int` `G[][], ``int` `src, ``int` `colorArr[]) ` `{ ` `    ``colorArr[src] = ``1``; ` `  `  `    ``// Create a queue (FIFO) of vertex numbers and enqueue ` `    ``// source vertex for BFS traversal ` `    ``Deque q = ``new` `ArrayDeque<>(); ` `    ``q.push(src); ` `  `  `    ``// Run while there are vertices in queue (Similar to BFS) ` `    ``while` `(!q.isEmpty()) ` `    ``{ ` `        ``// Dequeue a vertex from queue ` `        ``int` `u = q.peek(); ` `        ``q.pop(); ` `  `  `        ``// Find all non-colored adjacent vertices ` `        ``for` `(``int` `v = ``0``; v < V; ++v) ` `        ``{ ` `            ``// An edge from u to v exists and destination ` `            ``// v is not colored ` `            ``if` `(G[u][v] == -``1` `&& colorArr[v] == -``1``) ` `            ``{ ` `                ``// Assign alternate color to this adjacent ` `                ``// v of u ` `                ``colorArr[v] = ``1` `- colorArr[u]; ` `                ``q.push(v); ` `            ``} ` `  `  `            ``// An edge from u to v exists and destination ` `            ``// v is colored with same color as u ` `            ``else` `if` `(G[u][v] == colorArr[u] && colorArr[v] == colorArr[u]) ` `                ``return` `false``; ` `        ``} ` `    ``} ` `  `  `    ``// If we reach here, then all adjacent vertices can ` `    ``// be colored with alternate color ` `    ``return` `true``; ` `} ` `  `  `// Returns true if a Graph G[][] is Bipartite or not. Note ` `// that G may not be connected. ` `static` `boolean` `isBipartite(``int` `G[][]) ` `{ ` `    ``// Create a color array to store colors assigned ` `    ``// to all veritces. Vertex number is used as index in ` `    ``// this array. The value '-1' of  colorArr[i] ` `    ``// is used to indicate that no color is assigned to ` `    ``// vertex 'i'.  The value 1 is used to indicate first ` `    ``// color is assigned and value 0 indicates ` `    ``// second color is assigned. ` `    ``int` `colorArr[]=``new` `int``[V]; ` `    ``for` `(``int` `i = ``0``; i < V; ++i) ` `        ``colorArr[i] = -``1``; ` `  `  `    ``// One by one check all not yet colored vertices. ` `    ``for` `(``int` `i = ``0``; i < V; i++) ` `        ``if` `(colorArr[i] == -``1``) ` `            ``if` `(isBipartiteUtil(G, i, colorArr) == ``false``) ` `                ``return` `false``; ` `  `  `    ``return` `true``; ` `} ` `  `  `// Returns true if G can be divided into ` `// two Cliques, else false. ` `static` `boolean` `canBeDividedinTwoCliques(``int` `G[][]) ` `{ ` `    ``// Find complement of G[][] ` `    ``// All values are complemented except ` `    ``// diagonal ones ` `    ``int` `GC[][]=``new` `int``[V][V]; ` `    ``for` `(``int` `i=``0``; i

## Python3

 `# Python3 program to find out whether a given  ` `# graph can be converted to two Cliques or not.  ` `from` `queue ``import` `Queue  ` ` `  `# This function returns true if subgraph  ` `# reachable from src is Bipartite or not.  ` `def` `isBipartiteUtil(G, src, colorArr): ` `    ``global` `V ` `    ``colorArr[src] ``=` `1` ` `  `    ``# Create a queue (FIFO) of vertex numbers  ` `    ``# and enqueue source vertex for BFS traversal  ` `    ``q ``=` `Queue()  ` `    ``q.put(src)  ` ` `  `    ``# Run while there are vertices in ` `    ``# queue (Similar to BFS)  ` `    ``while` `(``not` `q.empty()): ` `         `  `        ``# Dequeue a vertex from queue  ` `        ``u ``=` `q.get() ` ` `  `        ``# Find all non-colored adjacent vertices ` `        ``for` `v ``in` `range``(V): ` `             `  `            ``# An edge from u to v exists and  ` `            ``# destination v is not colored  ` `            ``if` `(G[u][v] ``and` `colorArr[v] ``=``=` `-``1``): ` `                 `  `                ``# Assign alternate color to this   ` `                ``# adjacent v of u  ` `                ``colorArr[v] ``=` `1` `-` `colorArr[u]  ` `                ``q.put(v) ` ` `  `            ``# An edge from u to v exists and destination  ` `            ``# v is colored with same color as u  ` `            ``elif` `(G[u][v] ``and` `colorArr[v] ``=``=` `colorArr[u]):  ` `                ``return` `False` ` `  `    ``# If we reach here, then all adjacent  ` `    ``# vertices can be colored with alternate color  ` `    ``return` `True` ` `  `# Returns true if a Graph G[][] is Bipartite or not.  ` `# Note that G may not be connected.  ` `def` `isBipartite(G): ` `    ``global` `V ` `     `  `    ``# Create a color array to store colors assigned  ` `    ``# to all veritces. Vertex number is used as index   ` `    ``# in this array. The value '-1' of colorArr[i]  ` `    ``# is used to indicate that no color is assigned  ` `    ``# to vertex 'i'. The value 1 is used to indicate  ` `    ``# first color is assigned and value 0 indicates  ` `    ``# second color is assigned.  ` `    ``colorArr ``=` `[``-``1``] ``*` `V ` ` `  `    ``# One by one check all not yet ` `    ``# colored vertices. ` `    ``for` `i ``in` `range``(V): ` `        ``if` `(colorArr[i] ``=``=` `-``1``): ` `            ``if` `(isBipartiteUtil(G, i, colorArr) ``=``=` `False``):  ` `                ``return` `False` ` `  `    ``return` `True` ` `  `# Returns true if G can be divided into  ` `# two Cliques, else false.  ` `def` `canBeDividedinTwoCliques(G): ` `    ``global` `V ` `     `  `    ``# Find complement of G[][]  ` `    ``# All values are complemented  ` `    ``# except diagonal ones  ` `    ``GC ``=` `[[``None``] ``*` `V ``for` `i ``in` `range``(V)] ` `    ``for` `i ``in` `range``(V): ` `        ``for` `j ``in` `range``(V): ` `            ``GC[i][j] ``=` `not` `G[i][j] ``if` `i !``=` `j ``else` `0` ` `  `    ``# Return true if complement is   ` `    ``# Bipartite else false.  ` `    ``return` `isBipartite(GC) ` ` `  `# Driver Code ` `V ``=` `5` ` `  `G ``=` `[[``0``, ``1``, ``1``, ``1``, ``0``],  ` `     ``[``1``, ``0``, ``1``, ``0``, ``0``],  ` `     ``[``1``, ``1``, ``0``, ``0``, ``0``],  ` `     ``[``0``, ``1``, ``0``, ``0``, ``1``], ` `     ``[``0``, ``0``, ``0``, ``1``, ``0``]] ` ` `  `if` `canBeDividedinTwoCliques(G): ` `    ``print``(``"Yes"``) ` `else``: ` `    ``print``(``"No"``) ` ` `  `# This code is contributed by PranchalK `

Output :

`Yes`

Time complexity of above implementation is O(V2).

This article is contributed by Shubham Saxena. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

9

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.