Twisted Tower of Hanoi Problem

The basic version of the Tower of Hanoi can be found here.
It is a twisted Tower of Hanoi problem. In which, all rules are the same with an addition of a rule:
You can not move any disk directly from the first rod to last rod i.e., If you want to move a disk from the first rod to last rod then you have to move the first rod to middle rod first and then to the last one.

Approach:

  • Base Case: If the number of disk is 1, then move it to the middle rod first and then move it to the last rod.
  • Recursive Case: In the recursive case following steps will produce the optimal solution:(All these moves are following the rules of twisted Tower of Hanoi problem)
    1. We will move first n-1 disks to the last rod first.
    2. Then move the largest disk to the middle rod.
    3. Move first n-1 disks from the last rod to the first rod.
    4. Move the largest disk at the middle rod to the last rod.
    5. Move all n-1 disks from the first rode to the last rod.

Below is the implementation of the above approach:

C++



filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation
#include <iostream>
using namespace std;
  
// Function to print the moves
void twistedTOH(int n, char first,
                char middle, char last)
{
    // Base case
    if (n == 1) {
  
        cout << "Move disk " << n
             << " from rod " << first
             << " to " << middle
             << " and then to "
             << last << endl;
  
        return;
    }
  
    // Move n-1 disks from first to last
    twistedTOH(n - 1, first, middle, last);
  
    // Move largest disk from first to middle
    cout << "Move disk " << n
         << " from rod " << first
         << " to " << middle << endl;
  
    // Move n-1 disks from last to first
    twistedTOH(n - 1, last, middle, first);
  
    // Move nth disk from middle to last
    cout << "Move disk " << n
         << " from rod " << middle
         << " to " << last << endl;
  
    // Move n-1 disks from first to last
    twistedTOH(n - 1, first, middle, last);
}
  
// Driver's Code
int main()
{
    // Number of disks
    int n = 2;
  
    // Rods are in order
    // first(A), middle(B), last(C)
    twistedTOH(n, 'A', 'B', 'C');
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
import java.util.*;
  
class GFG
{
  
// Function to print the moves
static void twistedTOH(int n, char first,
                char middle, char last)
{
    // Base case
    if (n == 1)
    {
  
        System.out.println("Move disk " + n + " from rod " +
                                   first + " to " + middle + 
                                    " and then to " + last);
  
        return;
    }
  
    // Move n-1 disks from first to last
    twistedTOH(n - 1, first, middle, last);
  
    // Move largest disk from first to middle
    System.out.println("Move disk " + n + 
                       " from rod " + first + 
                       " to " + middle);
  
    // Move n-1 disks from last to first
    twistedTOH(n - 1, last, middle, first);
  
    // Move nth disk from middle to last
    System.out.println("Move disk " + n + 
                       " from rod " + middle + 
                       " to " + last);
  
    // Move n-1 disks from first to last
    twistedTOH(n - 1, first, middle, last);
}
  
// Driver Code
public static void main(String[] args)
{
    // Number of disks
    int n = 2;
  
    // Rods are in order
    // first(A), middle(B), last(C)
    twistedTOH(n, 'A', 'B', 'C');
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach
  
# Function to print the moves 
def twistedTOH(n, first, middle, last): 
      
    # Base case 
    if (n == 1): 
  
        print("Move disk", n, "from rod", first, 
              "to", middle, "and then to", last) 
  
        return
  
    # Move n-1 disks from first to last 
    twistedTOH(n - 1, first, middle, last) 
  
    # Move largest disk from first to middle 
    print("Move disk", n, "from rod",
                 first, "to", middle) 
  
    # Move n-1 disks from last to first 
    twistedTOH(n - 1, last, middle, first) 
  
    # Move nth disk from middle to last 
    print("Move disk", n, "from rod"
                 middle, "to", last) 
  
    # Move n-1 disks from first to last 
    twistedTOH(n - 1, first, middle, last)
  
# Driver Code 
  
# Number of disks 
n = 2
  
# Rods are in order 
# first(A), middle(B), last(C) 
twistedTOH(n, 'A', 'B', 'C'
  
# This code is contributed by
# divyamohan123

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
      
class GFG
{
  
// Function to print the moves
static void twistedTOH(int n, char first,
                       char middle, char last)
{
    // Base case
    if (n == 1)
    {
        Console.WriteLine("Move disk " + n + " from rod " +
                                  first + " to " + middle + 
                                   " and then to " + last);
  
        return;
    }
  
    // Move n-1 disks from first to last
    twistedTOH(n - 1, first, middle, last);
  
    // Move largest disk from first to middle
    Console.WriteLine("Move disk " + n + 
                      " from rod " + first + 
                      " to " + middle);
  
    // Move n-1 disks from last to first
    twistedTOH(n - 1, last, middle, first);
  
    // Move nth disk from middle to last
    Console.WriteLine("Move disk " + n + 
                      " from rod " + middle + 
                      " to " + last);
  
    // Move n-1 disks from first to last
    twistedTOH(n - 1, first, middle, last);
}
  
// Driver Code
public static void Main(String[] args)
{
    // Number of disks
    int n = 2;
  
    // Rods are in order
    // first(A), middle(B), last(C)
    twistedTOH(n, 'A', 'B', 'C');
}
}
      
// This code is contributed by PrinciRaj1992

chevron_right


Output:

Move disk 1 from rod A to B and then to C
Move disk 2 from rod A to B
Move disk 1 from rod C to B and then to A
Move disk 2 from rod B to C
Move disk 1 from rod A to B and then to C

Recurrence formula:

T(n) = T(n-1) + 1 + T(n-1) + 1 + T(n-1)
     = 3 * T(n-1) + 2

where n is the number of disks.

By solving this recurrence the Time Complexity will be O(3n).



My Personal Notes arrow_drop_up

I am doing BTech at Dhirubhai Ambani Institute of Information and Communication Technology

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.