Skip to content
Related Articles

Related Articles

Triplet with a given sum in BST | Set 2
  • Last Updated : 01 Feb, 2021

Given a binary search tree, and an integer X, the task is to find if there exists a triplet with sum X. Print Yes or No correspondingly. Note that the three nodes may not necessarily be distinct.

Examples:  

Input: X = 15
          5 
        /   \ 
       3     7 
      / \   / \ 
     2   4 6   8
Output: Yes
{5, 5, 5} is one such triplet.
{3, 5, 7}, {2, 5, 8}, {4, 5, 6} are some others.
  
Input: X = 16
      1
       \
        2
         \
          3
           \
            4
             \
              5
Output: No

Simple Approach: A simple approach will be to convert the BST to a sorted array and then find the triplet using three pointers. This will take O(N) extra space where N is the number of nodes present in the Binary Search Tree. We have already discussed a similar problem in this article which takes O(N) extra space.

Better approach: We will solve this problem using a space efficient method by reducing the additional space complexity to O(H) where H is the height of BST. For that, we will use two pointer technique on BST. 
We will traverse all the nodes for the tree one by one and for each node, we will try to find a pair with a sum equal to (X – curr->data) where ‘curr’ is the current node of the BST we are traversing. 
We will use a technique similar to the technique discussed in this article for finding a pair.

Algorithm: Traverse each node of BST one by one and for each node:  



  1. Create a forward and backward iterator for BST. Let’s say the value of nodes they are pointing at are v1 and v2.
  2. Now at each step, 
    • If v1 + v2 = X, we found a pair, thus we will increase the count by 1.
    • If v1 + v2 less than or equal to x, we will make forward iterator point to the next element.
    • If v1 + v2 greater than x, we will make backward iterator point to the previous element.
  3. We will continue the above while the left iterator doesn’t point to a node with larger value than right node.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Node of the binary tree
struct node {
    int data;
    node* left;
    node* right;
    node(int data)
    {
        this->data = data;
        left = NULL;
        right = NULL;
    }
};
 
// Function that returns true if a pair exists
// in the binary search tree with sum equal to x
bool existsPair(node* root, int x)
{
    // Iterators for BST
    stack<node *> it1, it2;
 
    // Initializing forward iterator
    node* c = root;
    while (c != NULL)
        it1.push(c), c = c->left;
 
    // Initializing backward iterator
    c = root;
    while (c != NULL)
        it2.push(c), c = c->right;
 
    // Two pointer technique
    while (it1.size() and it2.size()) {
 
        // Variables to store values at
        // it1 and it2
        int v1 = it1.top()->data, v2 = it2.top()->data;
 
        // Base case
        if (v1 + v2 == x)
            return 1;
 
        if (v1 > v2)
            break;
 
        // Moving forward pointer
        if (v1 + v2 < x) {
            c = it1.top()->right;
            it1.pop();
            while (c != NULL)
                it1.push(c), c = c->left;
        }
        // Moving backward pointer
        else {
            c = it2.top()->left;
            it2.pop();
            while (c != NULL)
                it2.push(c), c = c->right;
        }
    }
 
    // Case when no pair is found
    return 0;
}
 
// Function that returns true if a triplet exists
// in the binary search tree with sum equal to x
bool existsTriplet(node* root, node* curr, int x)
{
    // If current node is NULL
    if (curr == NULL)
        return 0;
 
    // Conditions for existence of a triplet
    return (existsPair(root, x - curr->data)
            || existsTriplet(root, curr->left, x)
            || existsTriplet(root, curr->right, x));
}
 
// Driver code
int main()
{
    node* root = new node(5);
    root->left = new node(3);
    root->right = new node(7);
    root->left->left = new node(2);
    root->left->right = new node(4);
    root->right->left = new node(6);
    root->right->right = new node(8);
 
    int x = 24;
 
    if (existsTriplet(root, root, x))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java




// Java implementation of the approach
import java.io.*;
import java.util.*;
 
// Node of the binary tree
class Node
{
  int data;
  Node left, right;  
  Node(int item)
  {
    data = item;
    left = right = null;
  }
}
 
class GFG
{
  static Node root;
 
  // Function that returns true if a pair exists
  // in the binary search tree with sum equal to x
  static boolean existsPair(Node root, int x)
  {
 
    // Iterators for BST
    Stack<Node> it1 = new Stack<Node>();
    Stack<Node> it2 = new Stack<Node>();
 
    // Initializing forward iterator
    Node c = root;
    while (c != null)
    {
      it1.push(c);
      c = c.left;
    }
 
    // Initializing backward iterator
    c = root;
    while (c != null)
    {
      it2.push(c);
      c = c.right;
    }
 
    // Two pointer technique
    while (it1.size() > 0 && it2.size() > 0)
    {
 
      // Variables to store values at
      // it1 and it2
      int v1 = it1.peek().data;
      int v2 = it2.peek().data;
 
      // Base case
      if (v1 + v2 == x)
      {
        return true;
      }
      if (v1 > v2)
      {
        break;
      }
 
      // Moving forward pointer
      if (v1 + v2 < x)
      {
        c = it1.peek().right;
        it1.pop();
        while (c != null)
        {
          it1.push(c);
          c = c.left;
        }
      }
 
      // Moving backward pointer
      else
      {
        c = it2.peek().left;
        it2.pop();
        while(c != null)
        {
          it2.push(c);
          c = c.right;
        }
      }
    }
 
    // Case when no pair is found
    return false;
  }
 
  // Function that returns true if a triplet exists
  // in the binary search tree with sum equal to x
  static boolean existsTriplet(Node root,
                               Node curr, int x )
  {
 
    // If current node is NULL
    if(curr == null)
    {
      return false;
    }
 
    // Conditions for existence of a triplet
    return (existsPair(root, x - curr.data) ||
            existsTriplet(root, curr.left, x) ||
            existsTriplet(root, curr.right, x));
  }
 
  // Driver code
  public static void main (String[] args)
  {
    GFG  tree = new GFG();
    tree.root = new Node(5);
    tree.root.left = new Node(3);
    tree.root.right = new Node(7);
    tree.root.left.left = new Node(2);
    tree.root.left.right = new Node(4);
    tree.root.right.left = new Node(6);
    tree.root.right.right = new Node(8);
    int x = 24;
    if (existsTriplet(root, root, x))
    {
      System.out.println("Yes");
    }
    else
    {
      System.out.println("No");
    }   
  }
}
 
// This code is contributed by avanitrachhadiya2155

Python3




# Python3 implementation of the approach
 
class Node:
    def __init__(self, x):
        self.data = x
        self.left = None
        self.right = None
 
# Function that returns true if a pair exists
# in the binary search tree with sum equal to x
def existsPair(root, x):
     
    # Iterators for BST
    it1, it2 = [], []
 
    # Initializing forward iterator
    c = root
    while (c != None):
        it1.append(c)
        c = c.left
 
    # Initializing backward iterator
    c = root
    while (c != None):
        it2.append(c)
        c = c.right
 
    # Two pointer technique
    while (len(it1) > 0 and len(it2) > 0):
 
        # Variables to store values at
        # it1 and it2
        v1 = it1[-1].data
        v2 = it2[-1].data
 
        # Base case
        if (v1 + v2 == x):
            return 1
 
        if (v1 > v2):
            break
 
        # Moving forward pointer
        if (v1 + v2 < x):
            c = it1[-1].right
            del it1[-1]
            while (c != None):
                it1.append(c)
                c = c.left
         
        # Moving backward pointer
        else:
            c = it2[-1].left
            del it2[-1]
            while (c != None):
                it2.append(c)
                c = c.right
 
    # Case when no pair is found
    return 0
 
# Function that returns true if a triplet exists
# in the binary search tree with sum equal to x
def existsTriplet(root, curr, x):
     
    # If current node is NULL
    if (curr == None):
        return 0
 
    # Conditions for existence of a triplet
    return (existsPair(root, x - curr.data)
            or existsTriplet(root, curr.left, x)
            or existsTriplet(root, curr.right, x))
 
# Driver code
if __name__ == '__main__':
 
    root = Node(5)
    root.left = Node(3)
    root.right = Node(7)
    root.left.left = Node(2)
    root.left.right = Node(4)
    root.right.left = Node(6)
    root.right.right = Node(8)
 
    x = 24
 
    if (existsTriplet(root, root, x)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by mohit kumar 29

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
// Node of the binary tree
class Node
{
    public int data;
    public Node left, right;
     
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class GFG{
     
static Node root;
 
// Function that returns true if a pair exists
// in the binary search tree with sum equal to x
static bool existsPair(Node root, int x)
{
     
    // Iterators for BST
    Stack<Node> it1 = new Stack<Node>();
    Stack<Node> it2 = new Stack<Node>();
     
    // Initializing forward iterator
    Node c = root;
     
    while (c != null)
    {
        it1.Push(c);
        c = c.left;
    }
     
    // Initializing backward iterator
    c = root;
     
    while (c != null)
    {
        it2.Push(c);
        c = c.right;
    }
     
    // Two pointer technique
    while (it1.Count > 0 && it2.Count > 0)
    {
         
        // Variables to store values at
        // it1 and it2
        int v1 = it1.Peek().data;
        int v2 = it2.Peek().data;
         
        // Base case
        if (v1 + v2 == x)
        {
            return true;
        }
        if (v1 > v2)
        {
            break;
        }
         
        // Moving forward pointer
        if (v1 + v2 < x)
        {
            c = it1.Peek().right;
            it1.Pop();
             
            while (c != null)
            {
                it1.Push(c);
                c = c.left;
            }
        }
         
        // Moving backward pointer
        else
        {
            c = it2.Peek().left;
            it2.Pop();
             
            while(c != null)
            {
                it2.Push(c);
                c = c.right;
            }
        }
    }
     
    // Case when no pair is found
    return false;
}
 
// Function that returns true if a triplet exists
// in the binary search tree with sum equal to x
static bool existsTriplet(Node root, Node curr, int x)
{
     
    // If current node is NULL
    if (curr == null)
    {
        return false;
    }
     
    // Conditions for existence of a triplet
    return (existsPair(root, x - curr.data) ||
          existsTriplet(root, curr.left, x) ||
          existsTriplet(root, curr.right, x));
}
 
// Driver code
static public void Main()
{
    GFG.root = new Node(5);
    GFG.root.left = new Node(3);
    GFG.root.right = new Node(7);
    GFG.root.left.left = new Node(2);
    GFG.root.left.right = new Node(4);
    GFG.root.right.left = new Node(6);
    GFG.root.right.right = new Node(8);
     
    int x = 24;
     
    if (existsTriplet(root, root, x))
    {
        Console.WriteLine("Yes");
    }
    else
    {
        Console.WriteLine("No");
    }
}
}
 
// This code is contributed by rag2127
Output: 
Yes

 

Time complexity: O(N2
Space complexity: O(H)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :