Related Articles

# Triplet with a given sum in BST | Set 2

• Difficulty Level : Medium
• Last Updated : 07 Jun, 2021

Given a binary search tree, and an integer X, the task is to find if there exists a triplet with sum X. Print Yes or No correspondingly. Note that the three nodes may not necessarily be distinct.

Examples:

```Input: X = 15
5
/   \
3     7
/ \   / \
2   4 6   8
Output: Yes
{5, 5, 5} is one such triplet.
{3, 5, 7}, {2, 5, 8}, {4, 5, 6} are some others.

Input: X = 16
1
\
2
\
3
\
4
\
5
Output: No```

Simple Approach: A simple approach will be to convert the BST to a sorted array and then find the triplet using three pointers. This will take O(N) extra space where N is the number of nodes present in the Binary Search Tree. We have already discussed a similar problem in this article which takes O(N) extra space.

Better approach: We will solve this problem using a space efficient method by reducing the additional space complexity to O(H) where H is the height of BST. For that, we will use two pointer technique on BST.
We will traverse all the nodes for the tree one by one and for each node, we will try to find a pair with a sum equal to (X – curr->data) where ‘curr’ is the current node of the BST we are traversing.
We will use a technique similar to the technique discussed in this article for finding a pair.

Algorithm: Traverse each node of BST one by one and for each node:

1. Create a forward and backward iterator for BST. Let’s say the value of nodes they are pointing at are v1 and v2.
2. Now at each step,
• If v1 + v2 = X, we found a pair, thus we will increase the count by 1.
• If v1 + v2 less than or equal to x, we will make forward iterator point to the next element.
• If v1 + v2 greater than x, we will make backward iterator point to the previous element.
3. We will continue the above while the left iterator doesn’t point to a node with larger value than right node.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Node of the binary tree``struct` `node {``    ``int` `data;``    ``node* left;``    ``node* right;``    ``node(``int` `data)``    ``{``        ``this``->data = data;``        ``left = NULL;``        ``right = NULL;``    ``}``};` `// Function that returns true if a pair exists``// in the binary search tree with sum equal to x``bool` `existsPair(node* root, ``int` `x)``{``    ``// Iterators for BST``    ``stack it1, it2;` `    ``// Initializing forward iterator``    ``node* c = root;``    ``while` `(c != NULL)``        ``it1.push(c), c = c->left;` `    ``// Initializing backward iterator``    ``c = root;``    ``while` `(c != NULL)``        ``it2.push(c), c = c->right;` `    ``// Two pointer technique``    ``while` `(it1.size() and it2.size()) {` `        ``// Variables to store values at``        ``// it1 and it2``        ``int` `v1 = it1.top()->data, v2 = it2.top()->data;` `        ``// Base case``        ``if` `(v1 + v2 == x)``            ``return` `1;` `        ``if` `(v1 > v2)``            ``break``;` `        ``// Moving forward pointer``        ``if` `(v1 + v2 < x) {``            ``c = it1.top()->right;``            ``it1.pop();``            ``while` `(c != NULL)``                ``it1.push(c), c = c->left;``        ``}``        ``// Moving backward pointer``        ``else` `{``            ``c = it2.top()->left;``            ``it2.pop();``            ``while` `(c != NULL)``                ``it2.push(c), c = c->right;``        ``}``    ``}` `    ``// Case when no pair is found``    ``return` `0;``}` `// Function that returns true if a triplet exists``// in the binary search tree with sum equal to x``bool` `existsTriplet(node* root, node* curr, ``int` `x)``{``    ``// If current node is NULL``    ``if` `(curr == NULL)``        ``return` `0;` `    ``// Conditions for existence of a triplet``    ``return` `(existsPair(root, x - curr->data)``            ``|| existsTriplet(root, curr->left, x)``            ``|| existsTriplet(root, curr->right, x));``}` `// Driver code``int` `main()``{``    ``node* root = ``new` `node(5);``    ``root->left = ``new` `node(3);``    ``root->right = ``new` `node(7);``    ``root->left->left = ``new` `node(2);``    ``root->left->right = ``new` `node(4);``    ``root->right->left = ``new` `node(6);``    ``root->right->right = ``new` `node(8);` `    ``int` `x = 24;` `    ``if` `(existsTriplet(root, root, x))``        ``cout << ``"Yes"``;``    ``else``        ``cout << ``"No"``;` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.io.*;``import` `java.util.*;` `// Node of the binary tree``class` `Node``{``  ``int` `data;``  ``Node left, right;  ``  ``Node(``int` `item)``  ``{``    ``data = item;``    ``left = right = ``null``;``  ``}``}` `class` `GFG``{``  ``static` `Node root;` `  ``// Function that returns true if a pair exists``  ``// in the binary search tree with sum equal to x``  ``static` `boolean` `existsPair(Node root, ``int` `x)``  ``{` `    ``// Iterators for BST``    ``Stack it1 = ``new` `Stack();``    ``Stack it2 = ``new` `Stack();` `    ``// Initializing forward iterator``    ``Node c = root;``    ``while` `(c != ``null``)``    ``{``      ``it1.push(c);``      ``c = c.left;``    ``}` `    ``// Initializing backward iterator``    ``c = root;``    ``while` `(c != ``null``)``    ``{``      ``it2.push(c);``      ``c = c.right;``    ``}` `    ``// Two pointer technique``    ``while` `(it1.size() > ``0` `&& it2.size() > ``0``)``    ``{` `      ``// Variables to store values at``      ``// it1 and it2``      ``int` `v1 = it1.peek().data;``      ``int` `v2 = it2.peek().data;` `      ``// Base case``      ``if` `(v1 + v2 == x)``      ``{``        ``return` `true``;``      ``}``      ``if` `(v1 > v2)``      ``{``        ``break``;``      ``}` `      ``// Moving forward pointer``      ``if` `(v1 + v2 < x)``      ``{``        ``c = it1.peek().right;``        ``it1.pop();``        ``while` `(c != ``null``)``        ``{``          ``it1.push(c);``          ``c = c.left;``        ``}``      ``}` `      ``// Moving backward pointer``      ``else``      ``{``        ``c = it2.peek().left;``        ``it2.pop();``        ``while``(c != ``null``)``        ``{``          ``it2.push(c);``          ``c = c.right;``        ``}``      ``}``    ``}` `    ``// Case when no pair is found``    ``return` `false``;``  ``}` `  ``// Function that returns true if a triplet exists``  ``// in the binary search tree with sum equal to x``  ``static` `boolean` `existsTriplet(Node root,``                               ``Node curr, ``int` `x )``  ``{` `    ``// If current node is NULL``    ``if``(curr == ``null``)``    ``{``      ``return` `false``;``    ``}` `    ``// Conditions for existence of a triplet``    ``return` `(existsPair(root, x - curr.data) ||``            ``existsTriplet(root, curr.left, x) ||``            ``existsTriplet(root, curr.right, x));``  ``}` `  ``// Driver code``  ``public` `static` `void` `main (String[] args)``  ``{``    ``GFG  tree = ``new` `GFG();``    ``tree.root = ``new` `Node(``5``);``    ``tree.root.left = ``new` `Node(``3``);``    ``tree.root.right = ``new` `Node(``7``);``    ``tree.root.left.left = ``new` `Node(``2``);``    ``tree.root.left.right = ``new` `Node(``4``);``    ``tree.root.right.left = ``new` `Node(``6``);``    ``tree.root.right.right = ``new` `Node(``8``);``    ``int` `x = ``24``;``    ``if` `(existsTriplet(root, root, x))``    ``{``      ``System.out.println(``"Yes"``);``    ``}``    ``else``    ``{``      ``System.out.println(``"No"``);``    ``}   ``  ``}``}` `// This code is contributed by avanitrachhadiya2155`

## Python3

 `# Python3 implementation of the approach` `class` `Node:``    ``def` `__init__(``self``, x):``        ``self``.data ``=` `x``        ``self``.left ``=` `None``        ``self``.right ``=` `None` `# Function that returns true if a pair exists``# in the binary search tree with sum equal to x``def` `existsPair(root, x):``    ` `    ``# Iterators for BST``    ``it1, it2 ``=` `[], []` `    ``# Initializing forward iterator``    ``c ``=` `root``    ``while` `(c !``=` `None``):``        ``it1.append(c)``        ``c ``=` `c.left` `    ``# Initializing backward iterator``    ``c ``=` `root``    ``while` `(c !``=` `None``):``        ``it2.append(c)``        ``c ``=` `c.right` `    ``# Two pointer technique``    ``while` `(``len``(it1) > ``0` `and` `len``(it2) > ``0``):` `        ``# Variables to store values at``        ``# it1 and it2``        ``v1 ``=` `it1[``-``1``].data``        ``v2 ``=` `it2[``-``1``].data` `        ``# Base case``        ``if` `(v1 ``+` `v2 ``=``=` `x):``            ``return` `1` `        ``if` `(v1 > v2):``            ``break` `        ``# Moving forward pointer``        ``if` `(v1 ``+` `v2 < x):``            ``c ``=` `it1[``-``1``].right``            ``del` `it1[``-``1``]``            ``while` `(c !``=` `None``):``                ``it1.append(c)``                ``c ``=` `c.left``        ` `        ``# Moving backward pointer``        ``else``:``            ``c ``=` `it2[``-``1``].left``            ``del` `it2[``-``1``]``            ``while` `(c !``=` `None``):``                ``it2.append(c)``                ``c ``=` `c.right` `    ``# Case when no pair is found``    ``return` `0` `# Function that returns true if a triplet exists``# in the binary search tree with sum equal to x``def` `existsTriplet(root, curr, x):``    ` `    ``# If current node is NULL``    ``if` `(curr ``=``=` `None``):``        ``return` `0` `    ``# Conditions for existence of a triplet``    ``return` `(existsPair(root, x ``-` `curr.data)``            ``or` `existsTriplet(root, curr.left, x)``            ``or` `existsTriplet(root, curr.right, x))` `# Driver code``if` `__name__ ``=``=` `'__main__'``:` `    ``root ``=` `Node(``5``)``    ``root.left ``=` `Node(``3``)``    ``root.right ``=` `Node(``7``)``    ``root.left.left ``=` `Node(``2``)``    ``root.left.right ``=` `Node(``4``)``    ``root.right.left ``=` `Node(``6``)``    ``root.right.right ``=` `Node(``8``)` `    ``x ``=` `24` `    ``if` `(existsTriplet(root, root, x)):``        ``print``(``"Yes"``)``    ``else``:``        ``print``(``"No"``)` `# This code is contributed by mohit kumar 29`

## C#

 `// C# implementation of the approach``using` `System;``using` `System.Collections.Generic;` `// Node of the binary tree``class` `Node``{``    ``public` `int` `data;``    ``public` `Node left, right;``    ` `    ``public` `Node(``int` `item)``    ``{``        ``data = item;``        ``left = right = ``null``;``    ``}``}` `class` `GFG{``    ` `static` `Node root;` `// Function that returns true if a pair exists``// in the binary search tree with sum equal to x``static` `bool` `existsPair(Node root, ``int` `x)``{``    ` `    ``// Iterators for BST``    ``Stack it1 = ``new` `Stack();``    ``Stack it2 = ``new` `Stack();``    ` `    ``// Initializing forward iterator``    ``Node c = root;``    ` `    ``while` `(c != ``null``)``    ``{``        ``it1.Push(c);``        ``c = c.left;``    ``}``    ` `    ``// Initializing backward iterator``    ``c = root;``    ` `    ``while` `(c != ``null``)``    ``{``        ``it2.Push(c);``        ``c = c.right;``    ``}``    ` `    ``// Two pointer technique``    ``while` `(it1.Count > 0 && it2.Count > 0)``    ``{``        ` `        ``// Variables to store values at``        ``// it1 and it2``        ``int` `v1 = it1.Peek().data;``        ``int` `v2 = it2.Peek().data;``        ` `        ``// Base case``        ``if` `(v1 + v2 == x)``        ``{``            ``return` `true``;``        ``}``        ``if` `(v1 > v2)``        ``{``            ``break``;``        ``}``        ` `        ``// Moving forward pointer``        ``if` `(v1 + v2 < x)``        ``{``            ``c = it1.Peek().right;``            ``it1.Pop();``            ` `            ``while` `(c != ``null``)``            ``{``                ``it1.Push(c);``                ``c = c.left;``            ``}``        ``}``        ` `        ``// Moving backward pointer``        ``else``        ``{``            ``c = it2.Peek().left;``            ``it2.Pop();``            ` `            ``while``(c != ``null``)``            ``{``                ``it2.Push(c);``                ``c = c.right;``            ``}``        ``}``    ``}``    ` `    ``// Case when no pair is found``    ``return` `false``;``}` `// Function that returns true if a triplet exists``// in the binary search tree with sum equal to x``static` `bool` `existsTriplet(Node root, Node curr, ``int` `x)``{``    ` `    ``// If current node is NULL``    ``if` `(curr == ``null``)``    ``{``        ``return` `false``;``    ``}``    ` `    ``// Conditions for existence of a triplet``    ``return` `(existsPair(root, x - curr.data) ||``          ``existsTriplet(root, curr.left, x) ||``          ``existsTriplet(root, curr.right, x));``}` `// Driver code``static` `public` `void` `Main()``{``    ``GFG.root = ``new` `Node(5);``    ``GFG.root.left = ``new` `Node(3);``    ``GFG.root.right = ``new` `Node(7);``    ``GFG.root.left.left = ``new` `Node(2);``    ``GFG.root.left.right = ``new` `Node(4);``    ``GFG.root.right.left = ``new` `Node(6);``    ``GFG.root.right.right = ``new` `Node(8);``    ` `    ``int` `x = 24;``    ` `    ``if` `(existsTriplet(root, root, x))``    ``{``        ``Console.WriteLine(``"Yes"``);``    ``}``    ``else``    ``{``        ``Console.WriteLine(``"No"``);``    ``}``}``}` `// This code is contributed by rag2127`

## Javascript

 ``
Output:
`Yes`

Time complexity: O(N2
Space complexity: O(H)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up