Skip to content
Related Articles

Related Articles

Triple Order Traversal of a Binary Tree

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 11 Oct, 2021

Given a Binary Tree, the task is to find it’s Triple Order Traversal.  

Triple Order Traversal is a tree traversal technique in which every node is traversed thrice in the following order:  

  • Visit the root node
  • Traverse the left subtree
  • Visit the root node
  • Traverse the right subtree
  • Visit the root node.

Examples:

Input:
            A
           / \
          B   C
         / \   \
        F   D   E
       
Output: A B F F F B D D D B A C C E E E C A

Input:
            A
           / \
          B   C
         / \   
        E   D   
       /
      F
Output: A B E F F F E E B D D D B A C C C A 

Approach: 
Follow the steps below to solve the problem:  

  • Start the traversal from the root.
  • If the current node does not exist, simply return from it.
  • Otherwise:
    • Print the value of the current node.
    • Recursively traverse the left subtree.
    • Again, print the current node.
    • Recursively traverse the right subtree.
    • Again, print the current node.
  • Repeat the above steps until all nodes in the tree are visited.

Below is the implementation of the above approach: 

C++




// C++ Program to implement triple
// order traversal of a binary tree
#include <iostream>
using namespace std;
 
// Structure of a Node
struct node {
    char data;
    struct node *left, *right;
};
 
// Function to create new node
struct node* newNode(char ch)
{
    // Allocating a new node in the memory.
    struct node* Node = new node();
    Node->data = ch;
    Node->left = NULL;
    Node->right = NULL;
    return Node;
}
 
// Function to print Triple Order traversal
void tripleOrderTraversal(struct node* root)
{
    if (root) {
 
        // Print the current node
        cout << root->data << " ";
 
        // Traverse left subtree
        tripleOrderTraversal(root->left);
 
        // Print the current node
        cout << root->data << " ";
 
        // Traverse right subtree
        tripleOrderTraversal(root->right);
 
        // Print the current node
        cout << root->data << " ";
    }
}
 
// Driver Code
int main()
{
    struct node* root = newNode('A');
    root->left = newNode('B');
    root->right = newNode('C');
    root->left->left = newNode('F');
    root->left->right = newNode('D');
    root->right->right = newNode('E');
 
    tripleOrderTraversal(root);
}

Java




// Java program to implement triple
// order traversal of a binary tree
import java.util.*;
 
class GFG{
 
// Structure of a Node
static class node
{
    char data;
    node left, right;
};
 
// Function to create new node
static node newNode(char ch)
{
     
    // Allocating a new node in the memory.
    node n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Triple Order traversal
static void tripleOrderTraversal(node root)
{
    if (root != null)
    {
         
        // Print the current node
        System.out.print(root.data + " ");
 
        // Traverse left subtree
        tripleOrderTraversal(root.left);
 
        // Print the current node
        System.out.print(root.data + " ");
 
        // Traverse right subtree
        tripleOrderTraversal(root.right);
 
        // Print the current node
        System.out.print(root.data + " ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    node root = newNode('A');
    root.left = newNode('B');
    root.right = newNode('C');
    root.left.left = newNode('F');
    root.left.right = newNode('D');
    root.right.right = newNode('E');
 
    tripleOrderTraversal(root);
}
}
 
// This code is contributed by amal kumar choubey

Python3




# Python3 program to implement triple
# order traversal of a binary tree
 
# Structure of node
class Node:
     
    # Initialise the node
    def __init__(self, ch):
         
        self.data = ch
        self.left = None
        self.right = None
         
# Function to print the Triple Order Traversal
def tripleOrderTraversal(root):
     
    if root:
         
        # Print the current node
        print(root.data, end = ' ')
         
        # Print the left subtree
        tripleOrderTraversal(root.left)
         
        # Print the current node
        print(root.data, end = ' ')
         
        # Print the right subtree
        tripleOrderTraversal(root.right)
         
        # Print the current node
        print(root.data, end = ' ')
         
# Driver code
root = Node('A')
root.left = Node('B')
root.right = Node('C')
root.left.left = Node('F')
root.left.right = Node('D')
root.right.right = Node('E')
 
tripleOrderTraversal(root)
     
# This code is contributed by Stuti Pathak

C#




// C# program to implement triple
// order traversal of a binary tree
using System;
 
class GFG{
 
// Structure of a Node
public class node
{
    public char data;
    public node left, right;
};
 
// Function to create new node
static node newNode(char ch)
{
     
    // Allocating a new node in the memory.
    node n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Triple Order traversal
static void tripleOrderTraversal(node root)
{
    if (root != null)
    {
         
        // Print the current node
        Console.Write(root.data + " ");
 
        // Traverse left subtree
        tripleOrderTraversal(root.left);
 
        // Print the current node
        Console.Write(root.data + " ");
 
        // Traverse right subtree
        tripleOrderTraversal(root.right);
 
        // Print the current node
        Console.Write(root.data + " ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    node root = newNode('A');
    root.left = newNode('B');
    root.right = newNode('C');
    root.left.left = newNode('F');
    root.left.right = newNode('D');
    root.right.right = newNode('E');
 
    tripleOrderTraversal(root);
}
}
 
// This code is contributed by amal kumar choubey

Javascript




<script>
 
// javascript Program to implement triple
// order traversal of a binary tree
 
// Structure of a Node
class node {
 
    constructor()
    {
        this.data = 0;
        this.left = null;
        this.right = null;
    }
};
 
// Function to create new node
function newNode(ch)
{
    // Allocating a new node in the memory.
    var n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Triple Order traversal
function tripleOrderTraversal(root)
{
    if (root) {
 
        // Print the current node
        document.write( root.data + " ");
 
        // Traverse left subtree
        tripleOrderTraversal(root.left);
 
        // Print the current node
        document.write( root.data + " ");
 
        // Traverse right subtree
        tripleOrderTraversal(root.right);
 
        // Print the current node
        document.write( root.data + " ");
    }
}
 
// Driver Code
var root = newNode('A');
root.left = newNode('B');
root.right = newNode('C');
root.left.left = newNode('F');
root.left.right = newNode('D');
root.right.right = newNode('E');
tripleOrderTraversal(root);
 
 
</script>

Output: 

A B F F F B D D D B A C C E E E C A

 

Time Complexity: O(N), where N is the total number of nodes in the binary tree. 
Auxiliary Space: O(N)
Applications: Euler tour of a tree is a modified version of triple order traversal.
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!