Related Articles
Triangle of numbers arising from Gilbreath’s conjecture
• Last Updated : 16 Feb, 2021

The task is to find the triangle of numbers arising from Gilbreath’s conjecture
Gilbreath’s conjecture:
It is observed that given a sequence of prime numbers, a sequence can be formed by the absolute difference between the ith and (i+1)th term of the given sequence and the given process can be repeated to form a triangle of numbers. This numbers when forms the elements of Gilbreath conjecture triangle.
The Gilbreath triangle is formed as follows:

• Let us take primes: 2, 3, 5, 7.
• Now the difference between adjacent primes is: 1, 2, 2.
• Now the difference between adjacent elements is: 1, 0.
• Now the difference between adjacent elements is: 1.
• In this way, the Gilbreath triangle is formed as:

2 3 5 7
1 2 2
1 0
1
• This triangle will be read anti-diagonally upwards as
2, 1, 3, 1, 2, 5, 1, 0, 2, 7,

Examples:

Input: n = 10
Output: 2, 1, 3, 1, 2,
5, 1, 0, 2, 7,

Input: n = 15
Output: 2, 1, 3, 1, 2,
5, 1, 0, 2, 7,
1, 2, 2, 4, 11

Approach:

1. The (n, k) th term of the Gilbreath sequence is given by
• where n>0,
• F(0, k) is the kth prime number where n = 0.

1. Define a recursive function and we can map the (n, k)th term in a map and store them to reduce computation. we will fill the 0th row with primes.
2. Traverse the Gilbreath triangle anti-diagonally upwards so we will start from n = 0, k = 0, and in each step increase the k and decrease the n if n<0 then we will assign n=k and k = 0, in this way we can traverse the triangle anti-diagonally upwards.
3. We have filled the 0th row with 100 primes. if we need to find larger terms of the series we can increase the primes.

Below is the implementation of the above approach:

## CPP14

 // C++ code for printing the Triangle of numbers// arising from Gilbreath's conjecture #include using namespace std; // Check whether the number// is prime or notbool is_Prime(int n){    if (n < 2)        return false;     for (int i = 2; i <= sqrt(n); i++)        if (n % i == 0)            return false;    return true;} // Set the 0th row of the matrix// with c primes from 0, 0 to 0, c-1void set_primes(map<int, map<int, int> >& mp,                map<int,                    map<int, int> >& hash,                int c){    int count = 0;     for (int i = 2; count < c; i++) {        if (is_Prime(i)) {            mp[count++] = i;            hash[count - 1] = 1;        }    }} // Find the n, k term of matrix of// Gilbreath's conjectureint Gilbreath(map<int, map<int, int> >& mp,              map<int, map<int, int> >& hash,              int n, int k){    if (hash[n][k] != 0)        return mp[n][k];     // recursively find    int ans        = abs(Gilbreath(mp, hash, n - 1, k + 1)              - Gilbreath(mp, hash, n - 1, k));     // store the ans    mp[n][k] = ans;    return ans;} // Print first n terms of Gilbreath sequence// successive absolute differences of primes// read by antidiagonals upwards.void solve(int n){    int i = 0, j = 0, count = 0;     // map to store the matrix    // and hash to check if the    // element is present or not    map<int, map<int, int> > mp, hash;     // set the primes of first row    set_primes(mp, hash, 100);     while (count < n) {         // print the Gilbreath number        cout << Gilbreath(mp, hash, i, j)             << ", ";         // increase the count        count++;         // anti diagonal upwards        i--;        j++;         if (i < 0) {            i = j;            j = 0;        }    }} // Driver codeint main(){    int n = 15;     solve(n);    return 0;}

## Java

 // Java code for printing the Triangle of numbers// arising from Gilbreath's conjectureimport java.util.*;public class GFG{   // Check whether the number  // is prime or not  static boolean is_Prime(int n)  {    if (n < 2)      return false;    for (int i = 2; i <= Math.sqrt(n); i++)      if (n % i == 0)        return false;    return true;  }   // Set the 0th row of the matrix  // with c primes from 0, 0 to 0, c-1  static void set_primes(HashMap> mp,                         HashMap> hash,                         int c)  {    int count = 0;     for (int i = 2; count < c; i++)    {      if (is_Prime(i))      {        if(!mp.containsKey(0))        {          mp.put(0, new HashMap());        }         if(!mp.get(0).containsKey(count))        {          mp.get(0).put(count, i);        }        else        {          mp.get(0).put(count, i);        }        count++;         if(!hash.containsKey(0))        {          hash.put(0, new HashMap());        }         if(!hash.get(0).containsKey(count - 1))        {          hash.get(0).put(count - 1, 1);        }        else        {          hash.get(0).put(count - 1, 1);        }      }    }  }   // Find the n, k term of matrix of  // Gilbreath's conjecture  static int Gilbreath(HashMap> mp,                       HashMap> hash,                       int n, int k)  {    if (hash.containsKey(n) && hash.get(n).containsKey(k) && hash.get(n).get(k) != 0)      return mp.get(n).get(k);     // recursively find    int ans      = Math.abs(Gilbreath(mp, hash, n - 1, k + 1)                 - Gilbreath(mp, hash, n - 1, k));     // store the ans    if(!mp.containsKey(n))    {      mp.put(n, new HashMap());    }    mp.get(n).put(k, ans);    return ans;  }   // Print first n terms of Gilbreath sequence  // successive absolute differences of primes  // read by antidiagonals upwards.  static void solve(int n)  {    int i = 0, j = 0, count = 0;     // map to store the matrix    // and hash to check if the    // element is present or not    HashMap> mp =      new HashMap>();    HashMap> hash =      new HashMap>();     // set the primes of first row    set_primes(mp, hash, 100);     while (count < n) {       // print the Gilbreath number      System.out.print(Gilbreath(mp, hash, i, j) + ", ");       // increase the count      count++;       // anti diagonal upwards      i--;      j++;      if (i < 0)      {        i = j;        j = 0;      }    }  }   // Driver code  public static void main(String[] args) {    int n = 15;    solve(n);  }} // This code is contributed by divyesh072019.

## Python3

 # Python3 code for printing the Triangle of numbers# arising from Gilbreath's conjectureimport math # Check whether the number# is prime or notdef is_Prime(n):    if (n < 2):        return False;    for i in range(2, int(math.sqrt(n)) + 1):          if (n % i == 0):            return False;    return True; # Set the 0th row of the matrix# with c primes from 0, 0 to 0, c-1def set_primes(mp, hash, c):    count = 0;    i = 2    while(count < c):        if (is_Prime(i)):            if 0 not in mp:                mp = dict()            mp[count] = i;            count += 1            if 0 not in hash:                hash = dict()            hash[count - 1] = 1;        i += 1  # Find the n, k term of matrix of# Gilbreath's conjecturedef Gilbreath(mp, hash, n, k):    if (n in hash and k in hash[n] and hash[n][k] != 0):        return mp[n][k];     # recursively find    ans = abs(Gilbreath(mp, hash, n - 1, k + 1)              - Gilbreath(mp, hash, n - 1, k));    if n not in mp:        mp[n] = dict()             # store the ans    mp[n][k] = ans;    return ans; # Print first n terms of Gilbreath sequence# successive absolute differences of primes# read by antidiagonals upwards.def solve(n):    i = 0    j = 0    count = 0;     # map to store the matrix    # and hash to check if the    # element is present or not    mp = dict()    hash = dict()     # set the primes of first row    set_primes(mp, hash, 100);    while (count < n):         # print the Gilbreath number        print(Gilbreath(mp, hash, i, j), end = ', ')         # increase the count        count += 1         # anti diagonal upwards        i -= 1        j += 1         if (i < 0):            i = j;            j = 0;         # Driver codeif __name__=='__main__':     n = 15;     solve(n);     # This code is contributed by rutvik_56.

## C#

 // C# code for printing the Triangle of numbers// arising from Gilbreath's conjectureusing System;using System.Collections.Generic;class GFG{         // Check whether the number    // is prime or not    static bool is_Prime(int n)    {        if (n < 2)            return false;        for (int i = 2; i <= Math.Sqrt(n); i++)            if (n % i == 0)                return false;        return true;    }          // Set the 0th row of the matrix    // with c primes from 0, 0 to 0, c-1    static void set_primes(Dictionary<int, Dictionary<int,int>> mp,                    Dictionary<int, Dictionary<int,int>> hash,                    int c)    {        int count = 0;              for (int i = 2; count < c; i++)        {            if (is_Prime(i))            {                if(!mp.ContainsKey(0))                {                    mp = new Dictionary<int,int>();                }                                 if(!mp.ContainsKey(count))                {                    mp.Add(count, i);                }                else                {                    mp[count] = i;                }                count++;                                 if(!hash.ContainsKey(0))                {                    hash = new Dictionary<int,int>();                }                                 if(!hash.ContainsKey(count - 1))                {                    hash.Add(count - 1, 1);                }                else                {                    hash[count - 1] = 1;                }            }        }    }          // Find the n, k term of matrix of    // Gilbreath's conjecture    static int Gilbreath(Dictionary<int, Dictionary<int,int>> mp,                  Dictionary<int, Dictionary<int,int>> hash,                  int n, int k)    {        if (hash.ContainsKey(n) && hash[n].ContainsKey(k) && hash[n][k] != 0)            return mp[n][k];              // recursively find        int ans            = Math.Abs(Gilbreath(mp, hash, n - 1, k + 1)                  - Gilbreath(mp, hash, n - 1, k));              // store the ans        if(!mp.ContainsKey(n))        {            mp[n] = new Dictionary<int, int>();        }        mp[n][k] = ans;        return ans;    }          // Print first n terms of Gilbreath sequence    // successive absolute differences of primes    // read by antidiagonals upwards.    static void solve(int n)    {        int i = 0, j = 0, count = 0;              // map to store the matrix        // and hash to check if the        // element is present or not        Dictionary<int, Dictionary<int,int>> mp =          new Dictionary<int, Dictionary<int,int>>();        Dictionary<int, Dictionary<int,int>> hash =          new Dictionary<int, Dictionary<int,int>>();              // set the primes of first row        set_primes(mp, hash, 100);              while (count < n) {                  // print the Gilbreath number            Console.Write(Gilbreath(mp, hash, i, j) + ", ");                  // increase the count            count++;                  // anti diagonal upwards            i--;            j++;            if (i < 0)            {                i = j;                j = 0;            }        }    }   // Driver code  static void Main()  {    int n = 15;    solve(n);  }} // This code is contributed by divyeshrabadiya07.
Output:
2, 1, 3, 1, 2, 5, 1, 0, 2, 7, 1, 2, 2, 4, 11,

Reference: http://oeis.org/A036262

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up