# Triangle of numbers arising from Gilbreath’s conjecture

The task is to find the triangle of numbers arising from Gilbreath’s conjecture.

Gilbreath’s conjecture:
It is observed that given a sequence of prime numbers, a sequence can be formed by the absolute difference between the ith and (i+1)th term of the given sequence and the given process can be repeated to form a triangle of numbers. This numbers when forms the elements of Gilbreath conjecture triangle.

The Gilbreath triangle is formed as follows:

• Let us take primes: 2, 3, 5, 7.
• Now the difference between adjacent primes is: 1, 2, 2.
• Now the difference between adjacent elements is: 1, 0.
• Now the difference between adjacent elements is: 1.
• In this way, the Gilbreath triangle is formed as:
2 3 5 7
1 2 2
1 0
1

• This triangle will be read anti-diagonally upwards as
2, 1, 3, 1, 2, 5, 1, 0, 2, 7,

Examples:

Input: n = 10
Output: 2, 1, 3, 1, 2,
5, 1, 0, 2, 7,

Input: n = 15
Output: 2, 1, 3, 1, 2,
5, 1, 0, 2, 7,
1, 2, 2, 4, 11


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

1. The (n, k) th term of the Gilbreath sequence is given by
• $\bg_white&space;\huge&space;{\color{DarkGreen}&space;F(n, k)&space;=&space;\left&space;|&space;F(n-1, k+1)-F(n-1, k)&space;\right&space;|&space;}$
where n>0,
• F(0, k) is the kth prime number where n = 0.
2. Define a recursive function and we can map the (n, k)th term in a map and store them to reduce computation. we will fill the 0th row with primes.
3. Traverse the Gilbreath triangle anti-diagonally upwards so we will start from n = 0, k = 0, and in each step increase the k and decrease the n if n<0 then we will assign n=k and k = 0, in this way we can traverse the triangle anti-diagonally upwards.
4. We have filled the 0th row with 100 primes. if we need to find larger terms of the series we can increase the primes.

Below is the implementation of the above approach:

 // C++ code for printing the Triangle of numbers  // arising from Gilbreath's conjecture     #include  using namespace std;     // Check whether the number  // is prime or not  bool is_Prime(int n)  {      if (n < 2)          return false;         for (int i = 2; i <= sqrt(n); i++)          if (n % i == 0)              return false;      return true;  }     // Set the 0th row of the matrix  // with c primes from 0, 0 to 0, c-1  void set_primes(map<int, map<int, int> >& mp,                  map<int,                      map<int, int> >& hash,                  int c)  {      int count = 0;         for (int i = 2; count < c; i++) {          if (is_Prime(i)) {              mp[0][count++] = i;              hash[0][count - 1] = 1;          }      }  }     // Find the n, k term of matrix of  // Gilbreath's conjecture  int Gilbreath(map<int, map<int, int> >& mp,                map<int, map<int, int> >& hash,                int n, int k)  {      if (hash[n][k] != 0)          return mp[n][k];         // recursively find      int ans          = abs(Gilbreath(mp, hash, n - 1, k + 1)                - Gilbreath(mp, hash, n - 1, k));         // store the ans      mp[n][k] = ans;      return ans;  }     // Print first n terms of Gilbreath sequence  // successive absolute differences of primes  // read by antidiagonals upwards.  void solve(int n)  {      int i = 0, j = 0, count = 0;         // map to store the matrix      // and hash to check if the      // element is present or not      map<int, map<int, int> > mp, hash;         // set the primes of first row      set_primes(mp, hash, 100);         while (count < n) {             // print the Gilbreath number          cout << Gilbreath(mp, hash, i, j)               << ", ";             // increase the count          count++;             // anti diagonal upwards          i--;          j++;             if (i < 0) {              i = j;              j = 0;          }      }  }     // Driver code  int main()  {      int n = 15;         solve(n);      return 0;  }

Output:

2, 1, 3, 1, 2, 5, 1, 0, 2, 7, 1, 2, 2, 4, 11,


Reference: http://oeis.org/A036262

My Personal Notes arrow_drop_up

Second year Department of Information Technology Jadavpur University

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.