Treasure and Cities
Given n cities: x1, x2, …… xn: each associated with T[i] (treasure) and C[i] (color). You can choose to visit a city or skip it. Only moving in the forward direction is allowed.When you visit a city you receive the following amount:
- A*T[i] if the color of visited city is the same as color of previously visited city
- B*T[i] if this is the first city visited or if the color of the visited city is different from the color of the previously visited city.The values of T[i], A and B can be negative while C[i] ranges from 1 to n.
We have to compute the maximum profit possible.
Examples:
Input : A = -5, B = 7 Treasure = {4, 8, 2, 9} color = {2, 2, 3, 2} Output : 133 Visit city 2, 3 and 4. Profit = 8*7+2*7+9*7 = 133 Input : A = 5, B = -7 Treasure = {4, 8, 2, 9} color = {2, 2, 3, 2} Output: 57 Visit city 1, 2, 4. Profit = (-7)*4+8*5+9*5 = 57
Source : Oracle Interview Experience Set 61.
This is a variation of standard 0/1 Knapsack problem. The idea is to either visit a city or skip it and return the maximum of both the cases.
Below is the solution of above problem.
C++
#include <bits/stdc++.h> using namespace std; // k is current index and col is previous color. int MaxProfit( int treasure[], int color[], int n, int k, int col, int A, int B) { int sum = 0; if (k == n) // base case return 0; // we have two options // either visit current city or skip that // check if color of this city is equal // to prev visited city if (col == color[k]) sum += max(A * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); else sum += max(B * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); // return max of both options return sum; } int main() { int A = -5, B = 7; int treasure[] = { 4, 8, 2, 9 }; int color[] = { 2, 2, 6, 2 }; int n = sizeof (color) / sizeof (color[0]); // Initially begin with color 0 cout << MaxProfit(treasure, color, n, 0, 0, A, B); return 0; } |
Java
class GFG{ // k is current index and col is previous color. static int MaxProfit( int treasure[], int color[], int n, int k, int col, int A, int B) { int sum = 0 ; if (k == n) // base case return 0 ; // we have two options // either visit current city or skip that // check if color of this city is equal // to prev visited city if (col == color[k]) sum += Math.max(A * treasure[k] + MaxProfit(treasure, color, n, k + 1 , color[k], A, B), MaxProfit(treasure, color, n, k + 1 , col, A, B)); else sum += Math.max(B * treasure[k] + MaxProfit(treasure, color, n, k + 1 , color[k], A, B), MaxProfit(treasure, color, n, k + 1 , col, A, B)); // return max of both options return sum; } public static void main(String[] args) { int A = - 5 , B = 7 ; int treasure[] = { 4 , 8 , 2 , 9 }; int color[] = { 2 , 2 , 6 , 2 }; int n = color.length; // Initially begin with color 0 System.out.print(MaxProfit(treasure, color, n, 0 , 0 , A, B)); } } // This code is contributed by PrinciRaj1992 |
Python3
# k is current index and col # is previous color. def MaxProfit(treasure, color, n, k, col, A, B): sum = 0 if k = = n: return 0 # we have two options either # visit current city or skip that # check if color of this city # is equal to prev visited city if col = = color[k]: sum + = max (A * treasure[k] + MaxProfit(treasure, color, n, k + 1 , color[k], A, B), MaxProfit(treasure, color, n, k + 1 , col, A, B)) else : sum + = max (B * treasure[k] + MaxProfit(treasure, color, n, k + 1 , color[k], A, B), MaxProfit(treasure, color, n, k + 1 , col, A, B)) # return max of both options return sum # Driver Code A = - 5 B = 7 treasure = [ 4 , 8 , 2 , 9 ] color = [ 2 , 2 , 6 , 2 ] n = len (color) # Initially begin with color 0 print ( MaxProfit(treasure, color, n, 0 , 0 , A, B)) # This code is contributed # by Shrikant13 |
C#
using System; class GFG { // k is current index and col is previous color. static int MaxProfit( int []treasure, int []color, int n, int k, int col, int A, int B) { int sum = 0; if (k == n) // base case return 0; // we have two options // either visit current city or skip that // check if color of this city is equal // to prev visited city if (col == color[k]) sum += Math.Max(A * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); else sum += Math.Max(B * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); // return max of both options return sum; } // Driver code public static void Main(String[] args) { int A = -5, B = 7; int []treasure = { 4, 8, 2, 9 }; int []color = { 2, 2, 6, 2 }; int n = color.Length; // Initially begin with color 0 Console.Write(MaxProfit(treasure, color, n, 0, 0, A, B)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // k is current index and col is previous color. function MaxProfit(treasure,color,n,k,col,A,B) { let sum = 0; if (k == n) // base case return 0; // we have two options // either visit current city or skip that // check if color of this city is equal // to prev visited city if (col == color[k]) sum += Math.max(A * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); else sum += Math.max(B * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); // return max of both options return sum; } let A = -5, B = 7; let treasure = [ 4, 8, 2, 9 ]; let color = [ 2, 2, 6, 2 ]; let n = color.length; // Initially begin with color 0 document.write(MaxProfit(treasure, color, n, 0, 0, A, B)); // This code is contributed by rag2127 </script> |
Output:
133
Since subproblems are evaluated again, this problem has Overlapping Subproblems property.
Following is Dynamic Programming based implementation.
C++
// A memoization based program to find maximum // treasure that can be collected. #include <bits/stdc++.h> using namespace std; const int MAX = 1001; int dp[MAX][MAX]; // k is current index and col is previous color. int MaxProfit( int treasure[], int color[], int n, int k, int col, int A, int B) { if (k == n) // base case return dp[k][col] = 0; if (dp[k][col] != -1) return dp[k][col]; int sum = 0; // we have two options // either visit current city or skip that if (col == color[k]) // check if color of this city is equal to prev visited city sum += max(A * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); else sum += max(B * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); // return max of both options return dp[k][col] = sum; } int main() { int A = -5, B = 7; int treasure[] = { 4, 8, 2, 9 }; int color[] = { 2, 2, 6, 2 }; int n = sizeof (color) / sizeof (color[0]); memset (dp, -1, sizeof (dp)); cout << MaxProfit(treasure, color, n, 0, 0, A, B); return 0; } |
Java
// A memoization based program to find maximum // treasure that can be collected. import java.util.*; class GFG { static int MAX = 1001 ; static int [][]dp = new int [MAX][MAX]; // k is current index and col is previous color. static int MaxProfit( int treasure[], int color[], int n, int k, int col, int A, int B) { if (k == n) // base case return dp[k][col] = 0 ; if (dp[k][col] != - 1 ) return dp[k][col]; int sum = 0 ; // we have two options // either visit current city or skip that // check if color of this city // is equal to prev visited city if (col == color[k]) sum += Math.max(A * treasure[k] + MaxProfit(treasure, color, n, k + 1 , color[k], A, B), MaxProfit(treasure, color, n, k + 1 , col, A, B)); else sum += Math.max(B * treasure[k] + MaxProfit(treasure, color, n, k + 1 , color[k], A, B), MaxProfit(treasure, color, n, k + 1 , col, A, B)); // return max of both options return dp[k][col] = sum; } // Driver code public static void main(String[] args) { int A = - 5 , B = 7 ; int treasure[] = { 4 , 8 , 2 , 9 }; int color[] = { 2 , 2 , 6 , 2 }; int n = color.length; for ( int i = 0 ; i < n; i++) for ( int j = 0 ; j < MAX; j++) dp[i][j] = - 1 ; System.out.print(MaxProfit(treasure, color, n, 0 , 0 , A, B)); } } // This code is contributed by 29AjayKumar |
Python3
# A memoization based program to find maximum # treasure that can be collected. MAX = 1001 dp = [[ - 1 for i in range ( MAX )] for i in range ( MAX )] # k is current index and col is previous color. def MaxProfit(treasure, color, n,k, col, A, B): if (k = = n): # base case dp[k][col] = 0 return dp[k][col] if (dp[k][col] ! = - 1 ): return dp[k][col] summ = 0 # we have two options # either visit current city or skip that if (col = = color[k]): # check if color of this city is equal to prev visited city summ + = max (A * treasure[k] + MaxProfit(treasure, color, n, k + 1 ,color[k], A, B), MaxProfit(treasure, color, n, k + 1 , col, A, B)) else : summ + = max (B * treasure[k] + MaxProfit(treasure, color, n, k + 1 ,color[k], A, B), MaxProfit(treasure, color, n, k + 1 , col, A, B)) dp[k][col] = summ # return max of both options return dp[k][col] # Driver code A = - 5 B = 7 treasure = [ 4 , 8 , 2 , 9 ] color = [ 2 , 2 , 6 , 2 ] n = len (color) print (MaxProfit(treasure, color, n, 0 , 0 , A, B)) # This code is contributed by shubhamsingh10 |
C#
// A memoization based program to find maximum // treasure that can be collected. using System; class GFG { static int MAX = 1001; static int [,]dp = new int [MAX, MAX]; // k is current index and col is previous color. static int MaxProfit( int []treasure, int []color, int n, int k, int col, int A, int B) { if (k == n) // base case return dp[k, col] = 0; if (dp[k, col] != -1) return dp[k, col]; int sum = 0; // we have two options // either visit current city or skip that // check if color of this city // is equal to prev visited city if (col == color[k]) sum += Math.Max(A * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); else sum += Math.Max(B * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); // return max of both options return dp[k, col] = sum; } // Driver code public static void Main(String[] args) { int A = -5, B = 7; int []treasure = { 4, 8, 2, 9 }; int []color = { 2, 2, 6, 2 }; int n = color.Length; for ( int i = 0; i < n; i++) for ( int j = 0; j < MAX; j++) dp[i, j] = -1; Console.Write(MaxProfit(treasure, color, n, 0, 0, A, B)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // A memoization based program to find maximum // treasure that can be collected. let MAX = 1001; let dp = new Array(MAX); for (let i = 0; i < MAX; i++) { dp[i] = new Array(MAX); for (let j = 0; j < MAX; j++) dp[i][j] = -1; } // k is current index and col is previous color. function MaxProfit(treasure, color, n, k, col, A, B) { if (k == n) // base case return dp[k][col] = 0; if (dp[k][col] != -1) return dp[k][col]; let sum = 0; // we have two options // either visit current city or skip that // check if color of this city // is equal to prev visited city if (col == color[k]) sum += Math.max(A * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); else sum += Math.max(B * treasure[k] + MaxProfit(treasure, color, n, k + 1, color[k], A, B), MaxProfit(treasure, color, n, k + 1, col, A, B)); // return max of both options return dp[k][col] = sum; } // Driver code let A = -5, B = 7; let treasure=[4, 8, 2, 9]; let color=[2, 2, 6, 2]; let n = color.length; document.write(MaxProfit(treasure, color, n, 0, 0, A, B)); // This code is contributed by avanitrachhadiya2155 </script> |
Output:
133
Please Login to comment...