Given a matrix mat[][] of size N x N, the task is to traverse the matrix Diagonally in Bottom-up fashion using recursion.
Diagonally Bottom-up Traversal:
- Traverse the major-diagonal of the matrix.
- Traverse the bottom diagonal to the major-diagonal of the matrix.
- Traverse the up diagonal to the major-diagonal of the matrix.
- Similarly, Traverse the matrix for every diagonal.
The below image shows the Bottom-up Traversal of the matrix.
Examples:
Input: M[][] = {{11, 42, 25, 51}, {14, 17, 61, 23}, {22, 38, 19, 12}, {27, 81, 29, 71}} Output: 11 17 19 71 14 38 29 42 61 12 22 81 25 23 27 51 Input: M[][] = {{3, 2, 5}, {4, 7, 6}, {2, 8, 9}} Output: 3 7 9 4 8 2 6 2 5
Approach: The idea is to traverse the major-diagonal elements of the matrix and then recursively call the for the bottom diagonal of the matrix and the diagonal above to the major-diagonal of the matrix. Recursive Definition of the approach is described as follows:
- Function Definition: For this problem, there will be the following arguments as follows:
- mat[][] // Matrix to be Traversed
- Current Row (say i) // Current Row to be Traversed
- Current Column (say j) // Current Column to be Traversed
- Number of rows (say row)
- Number of columns (say col)
- Base Case: The base case for this problem can be when the current row or the current column is out of bounds. In this case, traverse the other bottom diagonal, or if the bottom diagonal is chosen last time then traverse the major-diagonal just above it.
if (i >= row or j >= col) if (flag) // Change the Current index // to the bottom diagonal else // Change the current index // to the up diagonal of matrix
- Recursive Case: There will be two cases of the recursive traversal of the matrix which is defined as follows:
- Traversal of the Current Diagonal: To traverse the current diagonal increment the current row and column by 1 at the same time and recursively call the function.
- Traversal of Bottom / Up Diagonal: To traverse the bottom / up diagonal call the recursive function with the static variables storing the next traversal start point of the matrix.
Below is the implementation of the above approach:
C++
// C++ implementation to traverse the // matrix in the bottom-up fashion // using Recursion #include <iostream> using namespace std; // Recursive function to traverse the // matrix Diagonally Bottom-up bool traverseMatrixDiagonally( int m[][5], int i, int j, int row, int col) { // Static variable for changing // Row and coloumn static int k1 = 0, k2 = 0; // Flag variable for handling // Bottum up diagonal traversing static bool flag = true ; // Base Condition if (i >= row || j >= col) { // Condition when to traverse // Bottom Diagonal of the matrix if (flag) { int a = k1; k1 = k2; k2 = a; flag = !flag; k1++; } else { int a = k1; k1 = k2; k2 = a; flag = !flag; } cout << endl; return false ; } // Print matrix cell value cout << m[i][j] << " " ; // Recursive function to traverse // The matrix diagonally if (traverseMatrixDiagonally( m, i + 1, j + 1, row, col)) { return true ; } // Recursive function // to change diagonal if (traverseMatrixDiagonally( m, k1, k2, row, col)) { return true ; } return true ; } // Driver Code int main() { // Intialize the 5 x 5 matrix int mtrx[5][5] = { { 10, 11, 12, 13, 14 }, { 15, 16, 17, 18, 19 }, { 20, 21, 22, 23, 24 }, { 25, 26, 27, 28, 29 }, { 30, 31, 32, 33, 34 } }; // Function call // for traversing matrix traverseMatrixDiagonally( mtrx, 0, 0, 5, 5); } |
Java
// Java implementation to traverse // the matrix in the bottom-up // fashion using recursion class GFG{ // Static variable for changing // row and coloumn static int k1 = 0 , k2 = 0 ; // Flag variable for handling // bottum up diagonal traversing static boolean flag = true ; // Recursive function to traverse the // matrix diagonally bottom-up static boolean traverseMatrixDiagonally( int m[][], int i, int j, int row, int col) { // Base Condition if (i >= row || j >= col) { // Condition when to traverse // Bottom Diagonal of the matrix if (flag) { int a = k1; k1 = k2; k2 = a; flag = !flag; k1++; } else { int a = k1; k1 = k2; k2 = a; flag = !flag; } System.out.println(); return false ; } // Print matrix cell value System.out.print(m[i][j] + " " ); // Recursive function to traverse // The matrix diagonally if (traverseMatrixDiagonally(m, i + 1 , j + 1 , row, col)) { return true ; } // Recursive function // to change diagonal if (traverseMatrixDiagonally(m, k1, k2, row, col)) { return true ; } return true ; } // Driver Code public static void main(String[] args) { // Intialize the 5 x 5 matrix int mtrx[][] = { { 10 , 11 , 12 , 13 , 14 }, { 15 , 16 , 17 , 18 , 19 }, { 20 , 21 , 22 , 23 , 24 }, { 25 , 26 , 27 , 28 , 29 }, { 30 , 31 , 32 , 33 , 34 } }; // Function call // for traversing matrix traverseMatrixDiagonally(mtrx, 0 , 0 , 5 , 5 ); } } // This code is contributed by sapnasingh4991 |
Python3
# Python3 implementation to traverse the # matrix in the bottom-up fashion # using Recursion # Static variable for changing # Row and coloumn k1 = 0 k2 = 0 # Flag variable for handling # Bottum up diagonal traversing flag = True # Recursive function to traverse the # matrix Diagonally Bottom-up def traverseMatrixDiagonally(m, i, j, row, col): global k1 global k2 global flag # Base Condition if (i > = row or j > = col): # Condition when to traverse # Bottom Diagonal of the matrix if (flag): a = k1 k1 = k2 k2 = a if (flag): flag = False else : flag = True k1 + = 1 else : a = k1 k1 = k2 k2 = a if (flag): flag = False else : flag = True print () return False # Print matrix cell value print (m[i][j], end = " " ) # Recursive function to traverse # The matrix diagonally if (traverseMatrixDiagonally(m, i + 1 , j + 1 , row, col)): return True # Recursive function # to change diagonal if (traverseMatrixDiagonally(m, k1, k2, row, col)): return True return True # Driver Code # Intialize the 5 x 5 matrix mtrx = [[ 10 , 11 , 12 , 13 , 14 ], [ 15 , 16 , 17 , 18 , 19 ], [ 20 , 21 , 22 , 23 , 24 ], [ 25 , 26 , 27 , 28 , 29 ], [ 30 , 31 , 32 , 33 , 34 ]] # Function call # for traversing matrix traverseMatrixDiagonally(mtrx, 0 , 0 , 5 , 5 ) #This code is contributed by avanitrachhadiya2155 |
C#
// C# implementation to traverse // the matrix in the bottom-up // fashion using recursion using System; class GFG{ // Static variable for changing // row and coloumn static int k1 = 0, k2 = 0; // Flag variable for handling // bottum up diagonal traversing static bool flag = true ; // Recursive function to traverse the // matrix diagonally bottom-up static bool traverseMatrixDiagonally( int [,]m, int i, int j, int row, int col) { // Base Condition if (i >= row || j >= col) { // Condition when to traverse // Bottom Diagonal of the matrix if (flag) { int a = k1; k1 = k2; k2 = a; flag = !flag; k1++; } else { int a = k1; k1 = k2; k2 = a; flag = !flag; } Console.WriteLine(); return false ; } // Print matrix cell value Console.Write(m[i, j] + " " ); // Recursive function to traverse // The matrix diagonally if (traverseMatrixDiagonally(m, i + 1, j + 1, row, col)) { return true ; } // Recursive function // to change diagonal if (traverseMatrixDiagonally(m, k1, k2, row, col)) { return true ; } return true ; } // Driver Code public static void Main(String[] args) { // Intialize the 5 x 5 matrix int [,]mtrx = { { 10, 11, 12, 13, 14 }, { 15, 16, 17, 18, 19 }, { 20, 21, 22, 23, 24 }, { 25, 26, 27, 28, 29 }, { 30, 31, 32, 33, 34 } }; // Function call for // traversing matrix traverseMatrixDiagonally(mtrx, 0, 0, 5, 5); } } // This code is contributed by Amit Katiyar |
10 16 22 28 34 15 21 27 33 11 17 23 29 20 26 32 12 18 24 25 31 13 19 30 14
Time Complexity: O(N2)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.