Trapping Rain Water

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
 

Examples:  

Input: arr[]   = {2, 0, 2}
Output: 2
Explanation:
The structure is like below


We can trap 2 units of water in the middle gap.

Input: arr[]   = {3, 0, 2, 0, 4}
Output: 7
Explanation:
Structure is like below


We can trap "3 units" of water between 3 and 2,
"1 unit" on top of bar 2 and "3 units" between 2 
and 4.  See below diagram also.

Input: arr[] = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]
Output: 6

Explanation:
The structure is like below




Trap "1 unit" between first 1 and 2, "4 units" between
first 2 and 3 and "1 unit" between second last 1 and last 2 


We strongly recommend that you click here and practise it, before moving on to the solution.

Basic Insight: 
An element of the array can store water if there are higher bars on left and right. The amount of water to be stored in every element can be found out by finding the heights of bars on the left and right sides. The idea is to compute the amount of water that can be stored in every element of the array. 
Example 
Consider the array {3, 0, 0, 2, 0, 4}, three units of water can be stored three indexes 1 and 2, and one unit of water at index 3, and three units of water at index 4. 
 

For Array[] = {3, 0, 2, 0, 4} 
Water stored = 0 + 3 + 1 + 3 + 0 = 7 
 

Method 1 : This is a simple solution to the above problem.
 

  • Approach: The idea is to traverse every array element and find the highest bars on left and right sides. Take the smaller of two heights. The difference between the smaller height and height of the current element is the amount of water that can be stored in this array element.
  • Algorithm: 
    1. Traverse the array from start to end.
    2. For every element, traverse the array from start to that index and find the maximum height (a) and traverse the array from the current index to end and find the maximum height (b).
    3. The amount of water that will be stored in this column is min(a,b) – array[i], add this value to total amount of water stored
    4. Print the total amount of water stored.
  • Implementation: 
     

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include<bits/stdc++.h> 
using namespace std; 
  
// Function to return the maximum
// water that can be stored
int maxWater(int arr[], int n) 
{
      
    // To store the maximum water 
    // that can be stored
    int res = 0;
      
    // For every element of the array
    for (int i = 1; i < n-1; i++) {
          
        // Find the maximum element on its left
        int left = arr[i];
        for (int j=0; j<i; j++)
           left = max(left, arr[j]);
          
        // Find the maximum element on its right   
        int right = arr[i];
        for (int j=i+1; j<n; j++)
           right = max(right, arr[j]); 
         
       // Update the maximum water    
       res = res + (min(left, right) - arr[i]);   
    }
  
    return res; 
  
// Driver code
int main() 
    int arr[] = {0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1}; 
    int n = sizeof(arr)/sizeof(arr[0]); 
      
    cout << maxWater(arr, n); 
      
    return 0; 
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG{
  
// Function to return the maximum
// water that can be stored
public static int maxWater(int[] arr, int n) 
{
      
    // To store the maximum water
    // that can be stored
    int res = 0;
  
    // For every element of the array
    // except first and last element
    for(int i = 1; i < n - 1; i++)
    {
          
        // Find maximum element on its left
        int left = arr[i];
        for(int j = 0; j < i; j++)
        {
            left = Math.max(left, arr[j]);
        }
  
        // Find maximum element on its right
        int right = arr[i];
        for(int j = i + 1; j < n; j++)
        {
            right = Math.max(right, arr[j]);
        }
  
        // Update maximum water value
        res += Math.min(left, right) - arr[i];
    }
    return res;
}
  
// Driver code
public static void main(String[] args)
{
    int[] arr = { 0, 1, 0, 2, 1, 0
                  1, 3, 2, 1, 2, 1 };
    int n = arr.length;
  
    System.out.print(maxWater(arr,n));
}
}
  
// This code is contributed by Debidutta Rath

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the maximum 
# water that can be stored 
def maxWater(arr, n) :
      
    # To store the maximum water 
    # that can be stored 
    res = 0
      
    # For every element of the array 
    for i in range(1, n - 1) : 
          
        # Find the maximum element on its left 
        left = arr[i]; 
        for j in range(i) :
            left = max(left, arr[j]); 
          
        # Find the maximum element on its right 
        right = arr[i]; 
          
        for j in range(i + 1 , n) : 
            right = max(right, arr[j]);
              
        # Update the maximum water
        res = res + (min(left, right) - arr[i]); 
  
    return res; 
  
# Driver code 
if __name__ == "__main__"
  
    arr = [0, 1, 0, 2, 1, 0
           1, 3, 2, 1, 2, 1]; 
    n = len(arr); 
      
    print(maxWater(arr, n)); 
      
# This code is contributed by AnkitRai01

chevron_right


Output: 

6



 

  • Complexity Analysis: 
    • Time Complexity: O(n2). 
      There are two nested loops traversing the array, So time Complexity is O(n2).
    • Space Complexity: O(1). 
      No extra space required.

Method 2: This is an efficient solution to the above problem.
 

  • Approach: In the previous solution, to find the highest bar on the left and right, array traversal is needed which reduces the efficiency of the solution. To make this efficient one must pre-compute the highest bar on the left and right of every bar in linear time. Then use these pre-computed values to find the amount of water in every array element.
  • Algorithm: 
    1. Create two array left and right of size n. create a variable max_ = INT_MIN.
    2. Run one loop from start to end. In each iteration update max_ as max_ = max(max_, arr[i]) and also assign left[i] = max_
    3. Update max_ = INT_MIN.
    4. Run another loop from end to start. In each iteration update max_ as max_ = max(max_, arr[i]) and also assign right[i] = max_
    5. Traverse the array from start to end.
    6. The amount of water that will be stored in this column is min(a,b) – array[i],(where a = left[i] and b = right[i]) add this value to total amount of water stored
    7. Print the total amount of water stored.
  • Implementation: 
     

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find maximum amount of water that can
// be trapped within given set of bars.
#include <bits/stdc++.h>
using namespace std;
  
int findWater(int arr[], int n)
{
    // left[i] contains height of tallest bar to the
    // left of i'th bar including itself
    int left[n];
  
    // Right [i] contains height of tallest bar to
    // the right of ith bar including itself
    int right[n];
  
    // Initialize result
    int water = 0;
  
    // Fill left array
    left[0] = arr[0];
    for (int i = 1; i < n; i++)
        left[i] = max(left[i - 1], arr[i]);
  
    // Fill right array
    right[n - 1] = arr[n - 1];
    for (int i = n - 2; i >= 0; i--)
        right[i] = max(right[i + 1], arr[i]);
  
    // Calculate the accumulated water element by element
    // consider the amount of water on i'th bar, the
    // amount of water accumulated on this particular
    // bar will be equal to min(left[i], right[i]) - arr[i] .
    for (int i = 0; i < n; i++)
        water += min(left[i], right[i]) - arr[i];
  
    return water;
}
  
// Driver program
int main()
{
    int arr[] = { 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Maximum water that can be accumulated is "
         << findWater(arr, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find maximum amount of water that can
// be trapped within given set of bars.
  
class Test {
    static int arr[] = new int[] { 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 };
  
    // Method for maximum amount of water
    static int findWater(int n)
    {
        // left[i] contains height of tallest bar to the
        // left of i'th bar including itself
        int left[] = new int[n];
  
        // Right [i] contains height of tallest bar to
        // the right of ith bar including itself
        int right[] = new int[n];
  
        // Initialize result
        int water = 0;
  
        // Fill left array
        left[0] = arr[0];
        for (int i = 1; i < n; i++)
            left[i] = Math.max(left[i - 1], arr[i]);
  
        // Fill right array
        right[n - 1] = arr[n - 1];
        for (int i = n - 2; i >= 0; i--)
            right[i] = Math.max(right[i + 1], arr[i]);
  
        // Calculate the accumulated water element by element
        // consider the amount of water on i'th bar, the
        // amount of water accumulated on this particular
        // bar will be equal to min(left[i], right[i]) - arr[i] .
        for (int i = 0; i < n; i++)
            water += Math.min(left[i], right[i]) - arr[i];
  
        return water;
    }
  
    // Driver method to test the above function
    public static void main(String[] args)
    {
  
        System.out.println("Maximum water that can be accumulated is " + findWater(arr.length));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find maximum amount of water that can
# be trapped within given set of bars.
  
def findWater(arr, n):
  
    # left[i] contains height of tallest bar to the
    # left of i'th bar including itself
    left = [0]*n
  
    # Right [i] contains height of tallest bar to
    # the right of ith bar including itself
    right = [0]*n
  
    # Initialize result
    water = 0
  
    # Fill left array
    left[0] = arr[0]
    for i in range( 1, n):
        left[i] = max(left[i-1], arr[i])
  
    # Fill right array
    right[n-1] = arr[n-1]
    for i in range(n-2, -1, -1):
        right[i] = max(right[i + 1], arr[i]);
  
    # Calculate the accumulated water element by element
    # consider the amount of water on i'th bar, the
    # amount of water accumulated on this particular
    # bar will be equal to min(left[i], right[i]) - arr[i] .
    for i in range(0, n):
        water += min(left[i], right[i]) - arr[i]
  
    return water
  
  
# Driver program
  
arr = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]
n = len(arr)
print("Maximum water that can be accumulated is", findWater(arr, n))
  
# This code is contributed by
# Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find maximum amount of water that can
// be trapped within given set of bars.
using System;
  
class Test {
    static int[] arr = new int[] { 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 };
  
    // Method for maximum amount of water
    static int findWater(int n)
    {
        // left[i] contains height of tallest bar to the
        // left of i'th bar including itself
        int[] left = new int[n];
  
        // Right [i] contains height of tallest bar to
        // the right of ith bar including itself
        int[] right = new int[n];
  
        // Initialize result
        int water = 0;
  
        // Fill left array
        left[0] = arr[0];
        for (int i = 1; i < n; i++)
            left[i] = Math.Max(left[i - 1], arr[i]);
  
        // Fill right array
        right[n - 1] = arr[n - 1];
        for (int i = n - 2; i >= 0; i--)
            right[i] = Math.Max(right[i + 1], arr[i]);
  
        // Calculate the accumulated water element by element
        // consider the amount of water on i'th bar, the
        // amount of water accumulated on this particular
        // bar will be equal to min(left[i], right[i]) - arr[i] .
        for (int i = 0; i < n; i++)
            water += Math.Min(left[i], right[i]) - arr[i];
  
        return water;
    }
  
    // Driver method to test the above function
    public static void Main()
    {
  
        Console.WriteLine("Maximum water that can be accumulated is " + findWater(arr.Length));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find maximum
// amount of water that can
// be trapped within given set of bars.
  
function findWater($arr, $n)
{
      
    // left[i] contains height of
    // tallest bar to the
    // left of i'th bar including 
    // itself 
  
    // Right [i] contains height
    // of tallest bar to the right 
    // of ith bar including itself
    // $right[$n];
  
    // Initialize result
    $water = 0;
  
    // Fill left array
    $left[0] = $arr[0];
    for ($i = 1; $i < $n; $i++)
    $left[$i] = max($left[$i - 1],
                        $arr[$i]);
  
    // Fill right array
    $right[$n - 1] = $arr[$n - 1];
    for ($i = $n - 2; $i >= 0; $i--)
    $right[$i] = max($right[$i + 1], 
                           $arr[$i]);
  
    // Calculate the accumulated
    // water element by element
    // consider the amount of 
    // water on i'th bar, the
    // amount of water accumulated
    // on this particular
    // bar will be equal to min(left[i], 
    // right[i]) - arr[i] .
    for ($i = 0; $i < $n; $i++)
    $water += min($left[$i], $right[$i]) 
                             - $arr[$i];
  
    return $water;
}
  
    // Driver program
    $arr = array(0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1);
    $n = sizeof($arr);
    echo "Maximum water that can be accumulated is ",
        findWater($arr, $n);
      
// This code is contributed by ajit
?>

chevron_right


  • Output: 
     
Maximum water that can be accumulated is 6


  • Complexity Analysis: 
    • Time Complexity: O(n). 
      Only one traversal of the array is needed, So time Complexity is O(n).
    • Space Complexity: O(n). 
      Two extra array is needed each of size n.
  • Space Optimization for above Solution: Instead of maintaing two arrays of size n for storing left and right max of each element, maintain two variables to store the maximum till that point. Since water trapped at any element = min(max_left, max_right) – arr[i]. Calculate water trapped on smaller element out of A[lo] and A[hi] first and move the pointers till lo doesn’t cross hi.
  • Implementation: 
     

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find maximum amount of water that can
// be trapped within given set of bars.
// Space Complexity : O(1)
  
#include <iostream>
using namespace std;
  
int findWater(int arr[], int n)
{
    // initialize output
    int result = 0;
  
    // maximum element on left and right
    int left_max = 0, right_max = 0;
  
    // indices to traverse the array
    int lo = 0, hi = n - 1;
  
    while (lo <= hi) {
        if (arr[lo] < arr[hi]) {
            if (arr[lo] > left_max)
                // update max in left
                left_max = arr[lo];
            else
                // water on curr element = max - curr
                result += left_max - arr[lo];
            lo++;
        }
        else {
            if (arr[hi] > right_max)
                // update right maximum
                right_max = arr[hi];
            else
                result += right_max - arr[hi];
            hi--;
        }
    }
  
    return result;
}
  
int main()
{
    int arr[] = { 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Maximum water that can be accumulated is "
         << findWater(arr, n);
}
  
// This code is contributed by Aditi Sharma

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// JAVA Code For Trapping Rain Water
import java.util.*;
  
class GFG {
  
    static int findWater(int arr[], int n)
    {
        // initialize output
        int result = 0;
  
        // maximum element on left and right
        int left_max = 0, right_max = 0;
  
        // indices to traverse the array
        int lo = 0, hi = n - 1;
  
        while (lo <= hi) {
            if (arr[lo] < arr[hi]) {
                if (arr[lo] > left_max)
  
                    // update max in left
                    left_max = arr[lo];
                else
  
                    // water on curr element =
                    // max - curr
                    result += left_max - arr[lo];
                lo++;
            }
            else {
                if (arr[hi] > right_max)
  
                    // update right maximum
                    right_max = arr[hi];
  
                else
                    result += right_max - arr[hi];
                hi--;
            }
        }
  
        return result;
    }
  
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int arr[] = { 0, 1, 0, 2, 1, 0, 1,
                      3, 2, 1, 2, 1 };
        int n = arr.length;
  
        System.out.println("Maximum water that "
                           + "can be accumulated is "
                           + findWater(arr, n));
    }
}
// This code is contributed by Arnav Kr. Mandal.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find
# maximum amount of water that can
# be trapped within given set of bars.
# Space Complexity : O(1)
  
def findWater(arr, n):
  
    # initialize output
    result = 0
       
    # maximum element on left and right
    left_max = 0
    right_max = 0
       
    # indices to traverse the array
    lo = 0
    hi = n-1
       
    while(lo <= hi): 
      
        if(arr[lo] < arr[hi]):
          
            if(arr[lo] > left_max):
  
                # update max in left
                left_max = arr[lo]
            else:
  
                # water on curr element = max - curr
                result += left_max - arr[lo]
            lo+= 1
          
        else:
          
            if(arr[hi] > right_max):
                # update right maximum
                right_max = arr[hi]
            else:
                result += right_max - arr[hi]
            hi-= 1
          
    return result
   
# Driver program
  
arr = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]
n = len(arr)
  
print("Maximum water that can be accumulated is ",
        findWater(arr, n))
  
# This code is contributed
# by Anant Agarwal.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Code For Trapping Rain Water
using System;
  
class GFG {
  
    static int findWater(int[] arr, int n)
    {
        // initialize output
        int result = 0;
  
        // maximum element on left and right
        int left_max = 0, right_max = 0;
  
        // indices to traverse the array
        int lo = 0, hi = n - 1;
  
        while (lo <= hi) {
            if (arr[lo] < arr[hi]) {
                if (arr[lo] > left_max)
  
                    // update max in left
                    left_max = arr[lo];
                else
  
                    // water on curr element =
                    // max - curr
                    result += left_max - arr[lo];
                lo++;
            }
            else {
                if (arr[hi] > right_max)
  
                    // update right maximum
                    right_max = arr[hi];
  
                else
                    result += right_max - arr[hi];
                hi--;
            }
        }
  
        return result;
    }
  
    // Driver program
    public static void Main()
    {
        int[] arr = { 0, 1, 0, 2, 1, 0, 1,
                      3, 2, 1, 2, 1 };
        int result = Trap.findWater(arr, arr.length);
        System.out.print(" Total trapping water: " + result);
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find maximum amount
// of water that can be trapped within 
// given set of bars.
  
// Method to find maximum amount
// of water that can be trapped within 
// given set of bars.
function findWater($arr, $n)
{
      
    // initialize output
    $result = 0;
      
    // maximum element on 
    // left and right
    $left_max = 0; 
    $right_max = 0;
      
    // indices to traverse 
    // the array
    $lo = 0; $hi = $n - 1;
      
    while($lo <= $hi
    {
        if($arr[$lo] < $arr[$hi])
        {
            if($arr[$lo] > $left_max)
              
                // update max in left
                $left_max = $arr[$lo];
              
            else
              
                // water on curr 
                // element = max - curr
                $result += $left_max - $arr[$lo];
                $lo++;
        }
        else
        {
            if($arr[$hi] > $right_max)
              
                // update right maximum
                $right_max = $arr[$hi];
            else
                $result += $right_max - $arr[$hi];
                $hi--;
        }
    }
      
    return $result;
}
  
    // Driver Code
    $arr = array(0, 1, 0, 2, 1, 0, 
                 1, 3, 2, 1, 2, 1);
    $n = count($arr);
    echo "Maximum water that can be accumulated is ", findWater($arr, $n); 
  
// This code is contributed by anuj_67.
?>

chevron_right


  • Output
     
Maximum water that can be accumulated is 6



  • Complexity Analysis: 
    • Time Complexity: O(n). 
      Only one traversal of the array is needed.
    • Auxiliary Space: O(1). 
      As no extra space is required.
  • Thanks to Gaurav Ahirwar and Aditi Sharma for above solution. 
     

Method 3: Here another efficient solution has been shown.
 

  • Approach : The concept here is that if there is a larger wall to the right then the water can be retained with height equal to the smaller wall on the left. If there are no larger walls to the right then start from the left. There must be a larger wall to the left now. Let’s take an example if the heights are {….,3, 2, 1, 4,….}, So here 3 and 4 are boundaries the heights 2 and 1 are submerged and cannot act as boundaries. So at any point or index knowing the previous boundary is sufficient if there is a higher or equal length boundary in the remaining part of the array. If not then traverse the array backwards and now must be a larger wall to the left. 
     
  • Algorithm : 
    • Loop from index 0 to the end of the given array.
    • If a wall greater than or equal to the previous wall is encountered then make note of the index of that wall in a var called prev_index.
    • Keep adding previous wall’s height minus the current (ith) wall to the variable water.
    • Have a temporary variable that stores the same value as water.
    • If no wall greater than or equal to the previous wall is found then quit.
    • If prev_index < size of the input array then subtract the temp variable from water, and loop from end of the input array to prev_index and find a wall greater than or equal to the previous wall (in this case, the last wall from backwards).
  • Implementation: 
     

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include<iostream>
using namespace std;
  
// Function to return the maximum
// water that can be stored
int maxWater(int arr[], int n)
{
    int size = n - 1;
  
    // Let the first element be stored as
    // previous, we shall loop from index 1
    int prev = arr[0];
  
    // To store previous wall's index
    int prev_index = 0;
    int water = 0;
  
    // To store the water until a larger wall
    // is found, if there are no larger walls
    // then delete temp value from water
    int temp = 0;
    for(int i = 1; i <= size; i++)
    {
  
        // If the current wall is taller than
        // the previous wall then make current
        // wall as the previous wall and its
        // index as previous wall's index
        // for the subsequent loops
        if (arr[i] >= prev) 
        {
            prev = arr[i];
            prev_index = i;
  
            // Because larger or same 
            // height wall is found
            temp = 0;
        
        else
        {
              
            // Since current wall is shorter than
            // the previous, we subtract previous
            // wall's height from the current wall's
            // height and add it to the water
            water += prev - arr[i];
  
            // Store the same value in temp as well
            // If we dont find any larger wall then
            // we will subtract temp from water
            temp += prev - arr[i];
        }
    }
  
    // If the last wall was larger than or equal
    // to the previous wall then prev_index would
    // be equal to size of the array (last element)
    // If we didn't find a wall greater than or equal
    // to the previous wall from the left then
    // prev_index must be less than the index
    // of the last element
    if(prev_index < size) 
    {
  
        // Temp would've stored the water collected
        // from previous largest wall till the end
        // of array if no larger wall was found then
        // it has excess water and remove that
        // from water variable
        water -= temp;
  
        // We start from the end of the array,
        // so previous should be assigned to
        // the last element
        prev = arr[size];
  
        // Loop from the end of array up to the 
        // previous index which would contain
        // the largest wall from the left
        for(int i = size; i >= prev_index; i--) 
        {
  
            // Right end wall will be definitely 
            // smaller than the 'previous index' wall
            if(arr[i] >= prev)
            {
                prev = arr[i];
            
            else
            {
                water += prev - arr[i];
            }
        }
    }
  
    // Return the maximum water
    return water;
}
  
// Driver Code
int main()
{
    int arr[] = { 0, 1, 0, 2, 1, 0, 
                  1, 3, 2, 1, 2, 1 }; 
    int n = sizeof(arr) / sizeof(arr[0]);
  
    cout << maxWater(arr, n);
    return 0;
}
  
// This code is contributed by Debidutta Rath

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function to return the maximum
    // water that can be stored
    public static int maxWater(int arr[], int n)
    {
        int size = n - 1;
  
        // Let the first element be stored as
        // previous, we shall loop from index 1
        int prev = arr[0];
  
        // To store previous wall's index
        int prev_index = 0;
        int water = 0;
  
        // To store the water until a larger wall
        // is found, if there are no larger walls
        // then delete temp value from water
        int temp = 0;
        for (int i = 1; i <= size; i++) {
  
            // If the current wall is taller than
            // the previous wall then make current
            // wall as the previous wall and its
            // index as previous wall's index
            // for the subsequent loops
            if (arr[i] >= prev) {
                prev = arr[i];
                prev_index = i;
  
                // Because larger or same height wall is found
                temp = 0;
            }
            else {
  
                // Since current wall is shorter than
                // the previous, we subtract previous
                // wall's height from the current wall's
                // height and add it to the water
                water += prev - arr[i];
  
                // Store the same value in temp as well
                // If we dont find any larger wall then
                // we will subtract temp from water
                temp += prev - arr[i];
            }
        }
  
        // If the last wall was larger than or equal
        // to the previous wall then prev_index would
        // be equal to size of the array (last element)
        // If we didn't find a wall greater than or equal
        // to the previous wall from the left then
        // prev_index must be less than the index
        // of the last element
        if (prev_index < size) {
  
            // Temp would've stored the water collected
            // from previous largest wall till the end
            // of array if no larger wall was found then
            // it has excess water and remove that
            // from 'water' var
            water -= temp;
  
            // We start from the end of the array, so previous
            // should be assigned to the last element
            prev = arr[size];
  
            // Loop from the end of array up to the 'previous index'
            // which would contain the "largest wall from the left"
            for (int i = size; i >= prev_index; i--) {
  
                // Right end wall will be definitely smaller
                // than the 'previous index' wall
                if (arr[i] >= prev) {
                    prev = arr[i];
                }
                else {
                    water += prev - arr[i];
                }
            }
        }
  
        // Return the maximum water
        return water;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 };
        int n = arr.length;
        System.out.print(maxWater(arr, n));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Pythpn3 implementation of the approach
  
# Function to return the maximum
# water that can be stored
def maxWater(arr, n):
    size = n - 1
  
    # Let the first element be stored as
    # previous, we shall loop from index 1
    prev = arr[0]
  
    # To store previous wall's index
    prev_index = 0
    water = 0
  
    # To store the water until a larger wall
    # is found, if there are no larger walls
    # then delete temp value from water
    temp = 0
    for i in range(1, size + 1):
  
        # If the current wall is taller than
        # the previous wall then make current
        # wall as the previous wall and its
        # index as previous wall's index
        # for the subsequent loops
        if (arr[i] >= prev):
            prev = arr[i]
            prev_index = i
  
            # Because larger or same height wall is found
            temp = 0
        else:
  
            # Since current wall is shorter than
            # the previous, we subtract previous
            # wall's height from the current wall's
            # height and add it to the water
            water += prev - arr[i]
  
            # Store the same value in temp as well
            # If we dont find any larger wall then
            # we will subtract temp from water
            temp += prev - arr[i]
  
    # If the last wall was larger than or equal
    # to the previous wall then prev_index would
    # be equal to size of the array (last element)
    # If we didn't find a wall greater than or equal
    # to the previous wall from the left then
    # prev_index must be less than the index
    # of the last element
    if (prev_index < size):
  
        # Temp would've stored the water collected
        # from previous largest wall till the end
        # of array if no larger wall was found then
        # it has excess water and remove that
        # from 'water' var
        water -= temp
  
        # We start from the end of the array, so previous
        # should be assigned to the last element
        prev = arr[size]
  
        # Loop from the end of array up to the 'previous index'
        # which would contain the "largest wall from the left"
        for i in range(size, prev_index - 1, -1):
  
            # Right end wall will be definitely smaller
            # than the 'previous index' wall
            if (arr[i] >= prev):
                prev = arr[i]
            else:
                water += prev - arr[i]
  
    # Return the maximum water
    return water
  
# Driver code
arr = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]
n = len(arr)
print(maxWater(arr, n))
  
# This code is contributed by Mohit Kumar

chevron_right


Output: 



6



 

  • Complexity Analysis: 
    • Time Complexity: O(n). 
      As only one traversal of the array is needed.
    • Auxiliary Space: O(1). 
      As no extra space is required.

Method 4 (Using Stack):

We can use a Stack to track the bars that are bounded by the longer left and right bars. This can be done using only one iteration using Stacks.

Approach:

1. Loop through the indices of bars array.

2. For each bar, we can do the following:

  • While the Stack is not empty and current bar has a height greater than the top bar of stack,
  • Store the index of top bar in pop_height and pop it from the Stack.
  • Find the distance between left bar(current top) of the popped bar and current bar.
  • Find the minimum height between the top bar and current bar.
  • The maximum water that can be trapped is distance * min_height.
  • The water trapped including the popped bar is (distance * min_height) – height[pop_height].
  • Add that to the ans.

3. Final answer will the ans.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h> 
using namespace std;
  
// Function to return the maximum
// water that can be stored
int maxWater(int height[], int n)
{
      
    // Stores the indices of the bars
    stack <int> st;
  
    // Stores the final result
    int ans = 0;
  
    // Loop through the each bar
    for(int i = 0; i < n; i++)
    {
          
        // Remove bars from the stack
        // until the condition holds
        while ((!st.empty()) && 
               (height[st.top()] < height[i]))
        {
              
            // Store the height of the top
            // and pop it.
            int pop_height = height[st.top()];
            st.pop();
  
            // If the stack does not have any
            // bars or the the popped bar
            // has no left boundary
            if (st.empty())
                break;
  
            // Get the distance between the
            // left and right boundary of
            // popped bar
            int distance = i - st.top() - 1;
  
            // Calculate the min. height
            int min_height = min(height[st.top()],
                                 height[i]) -
                             pop_height;
  
            ans += distance * min_height;
        }
  
        // If the stack is either empty or
        // height of the current bar is less than
        // or equal to the top bar of stack
        st.push(i);
    }
    return ans;
}
  
// Driver code
int main() 
{
      
    int arr[] = { 0, 1, 0, 2, 1, 0,
                  1, 3, 2, 1, 2, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
      
    cout << maxWater(arr, n);
  
    return 0;
}
  
// The code is contributed by Soumitri Chattopadhyay

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

import java.util.*;
import java.io.*;
  
// Java implementation of the approach
class GFG {
  
    // Function to return the maximum
    // water that can be stored
    public static int maxWater(int[] height)
    {
        // Stores the indices of the bars
        Stack<Integer> stack = new Stack<>();
  
        // size of the array
        int n = height.length;
  
        // Stores the final result
        int ans = 0;
  
        // Loop through the each bar
        for (int i = 0; i < n; i++) {
  
            // Remove bars from the stack
            // until the condition holds
            while ((!stack.isEmpty())
                   && (height[stack.peek()] < height[i])) {
  
                // store the height of the top
                // and pop it.
                int pop_height = height[stack.peek()];
                stack.pop();
  
                // If the stack does not have any
                // bars or the the popped bar
                // has no left boundary
                if (stack.isEmpty())
                    break;
  
                // Get the distance between the
                // left and right boundary of
                // popped bar
                int distance = i - stack.peek() - 1;
  
                // Calculate the min. height
                int min_height
                    = Math.min(height[stack.peek()],
                               height[i])
                      - pop_height;
  
                ans += distance * min_height;
            }
  
            // If the stack is either empty or
            // height of the current bar is less than
            // or equal to the top bar of stack
            stack.push(i);
        }
  
        return ans;
    }
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 };
        System.out.print(maxWater(arr));
    }
}

chevron_right


Output:

6

TIme Complexity: O(n)

Auxiliary Space: O(n) 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up