Open In App

Transitive Closure of a Graph using DFS

Given a directed graph, find out if a vertex v is reachable from another vertex u for all vertex pairs (u, v) in the given graph. Here reachable means that there is a path from vertex u to v. The reach-ability matrix is called transitive closure of a graph.

For example, consider below graph:


Untitled-Diagram-(1)

Graph

Transitive closure of above graphs is
1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 1

We have discussed an O(V3) solution for this here. The solution was based on Floyd Warshall Algorithm. In this post, DFS solution is discussed. So for dense graph, it would become O(V3) and for sparse graph, it would become O(V2).

Below are the abstract steps of the algorithm. 

Implementation:

// C++ program to print transitive closure of a graph
#include <bits/stdc++.h>
using namespace std;

class Graph {
    int V; // No. of vertices
    bool** tc; // To store transitive closure
    list<int>* adj; // array of adjacency lists
    void DFSUtil(int u, int v);

public:
    Graph(int V); // Constructor

    // function to add an edge to graph
    void addEdge(int v, int w) { adj[v].push_back(w); }

    // prints transitive closure matrix
    void transitiveClosure();
};

Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];

    tc = new bool*[V];
    for (int i = 0; i < V; i++) {
        tc[i] = new bool[V];
        memset(tc[i], false, V * sizeof(bool));
    }
}

// A recursive DFS traversal function that finds
// all reachable vertices for s.
void Graph::DFSUtil(int s, int v) {
    // Mark reachability from s to v as true.
    tc[s][v] = true;

    // Explore all vertices adjacent to v
    for (int u : adj[v]) {
        // If s is not yet connected to u, explore further
        if (!tc[s][u]) {
            DFSUtil(s, u);
        }
    }
}
// The function to find transitive closure. It uses
// recursive DFSUtil()
void Graph::transitiveClosure()
{
    // Call the recursive helper function to print DFS
    // traversal starting from all vertices one by one
    for (int i = 0; i < V; i++)
        DFSUtil(i,
                i); // Every vertex is reachable from self.

    for (int i = 0; i < V; i++) {
        for (int j = 0; j < V; j++)
            cout << tc[i][j] << " ";
        cout << endl;
    }
}

// Driver code
int main()
{

    // Create a graph given in the above diagram
    Graph g(4);
    g.addEdge(0, 1);
    g.addEdge(0, 2);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(2, 3);
    g.addEdge(3, 3);
    cout << "Transitive closure matrix is \n";
    g.transitiveClosure();
    return 0;
}
// JAVA program to print transitive
// closure of a graph.

import java.util.ArrayList;
import java.util.Arrays;

// A directed graph using 
// adjacency list representation
public class Graph {

        // No. of vertices in graph
    private int vertices; 

        // adjacency list
    private ArrayList<Integer>[] adjList;

        // To store transitive closure
    private int[][] tc;

    // Constructor
    public Graph(int vertices) {

             // initialise vertex count
             this.vertices = vertices; 
             this.tc = new int[this.vertices][this.vertices];

             // initialise adjacency list
             initAdjList(); 
    }

    // utility method to initialise adjacency list
    @SuppressWarnings("unchecked")
    private void initAdjList() {

        adjList = new ArrayList[vertices];
        for (int i = 0; i < vertices; i++) {
            adjList[i] = new ArrayList<>();
        }
    }

    // add edge from u to v
    public void addEdge(int u, int v) {
                 
      // Add v to u's list.
        adjList[u].add(v); 
    }

    // The function to find transitive
    // closure. It uses
    // recursive DFSUtil()
    public void transitiveClosure() {

        // Call the recursive helper
        // function to print DFS
        // traversal starting from all
        // vertices one by one
        for (int i = 0; i < vertices; i++) {
            dfsUtil(i, i);
        }

        for (int i = 0; i < vertices; i++) {
          System.out.println(Arrays.toString(tc[i]));
        }
    }

    // A recursive DFS traversal
    // function that finds
    // all reachable vertices for s
    private void dfsUtil(int s, int v) {

        // Mark reachability from 
        // s to v as true.
       if(s==v){
          tc[s][v] = 1;
       }
      else
        tc[s][v] = 1;
        
        // Find all the vertices reachable
        // through v
        for (int adj : adjList[v]) {            
            if (tc[s][adj]==0) {
                dfsUtil(s, adj);
            }
        }
    }
    
    // Driver Code
    public static void main(String[] args) {

        // Create a graph given
        // in the above diagram
        Graph g = new Graph(4);

        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);
        System.out.println("Transitive closure " +
                "matrix is");

        g.transitiveClosure();

    }
}


// This code is contributed
// by Himanshu Shekhar
// C# program to print transitive
// closure of a graph.
using System;
using System.Collections.Generic;

// A directed graph using
// adjacency list representation
public class Graph {

    // No. of vertices in graph
    private int vertices;

    // adjacency list
    private List<int>[] adjList;

    // To store transitive closure
    private int[, ] tc;

    // Constructor
    public Graph(int vertices)
    {

        // initialise vertex count
        this.vertices = vertices;
        this.tc = new int[this.vertices, this.vertices];

        // initialise adjacency list
        initAdjList();
    }

    // utility method to initialise adjacency list
    private void initAdjList()
    {

        adjList = new List<int>[ vertices ];
        for (int i = 0; i < vertices; i++) {
            adjList[i] = new List<int>();
        }
    }

    // add edge from u to v
    public void addEdge(int u, int v)
    {

        // Add v to u's list.
        adjList[u].Add(v);
    }

    // The function to find transitive
    // closure. It uses
    // recursive DFSUtil()
    public void transitiveClosure()
    {

        // Call the recursive helper
        // function to print DFS
        // traversal starting from all
        // vertices one by one
        for (int i = 0; i < vertices; i++) {
            dfsUtil(i, i);
        }

        for (int i = 0; i < vertices; i++) {
            for (int j = 0; j < vertices; j++)
                Console.Write(tc[i, j] + " ");
            Console.WriteLine();
        }
    }

    // A recursive DFS traversal
    // function that finds
    // all reachable vertices for s
    private void dfsUtil(int s, int v)
    {

        // Mark reachability from
        // s to v as true.
        tc[s, v] = 1;

        // Find all the vertices reachable
        // through v
        foreach(int adj in adjList[v])
        {
            if (tc[s, adj] == 0) {
                dfsUtil(s, adj);
            }
        }
    }

    // Driver Code
    public static void Main(String[] args)
    {

        // Create a graph given
        // in the above diagram
        Graph g = new Graph(4);
        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);
        Console.WriteLine("Transitive closure "
                          + "matrix is");
        g.transitiveClosure();
    }
}

// This code is contributed by Rajput-Ji
<script>
/* Javascript program to print transitive
 closure of a graph*/
 
    class Graph
    {
        // Constructor
        constructor(v)
        {
            this.V = v;
            this.adj = new Array(v);
            this.tc = Array.from(Array(v), () => new Array(v).fill(0));
            for(let i = 0; i < v; i++)
                this.adj[i] = [];
        }

        // function to add an edge to graph
        addEdge(v, w)
        {
            this.adj[v].push(w);
        }

        // A recursive DFS traversal function that finds
        // all reachable vertices for s.
        DFSUtil(s, v)
        {
            // Mark reachability from s to v as true.
            this.tc[s][v] = 1;

            // Find all the vertices reachable through v
            for(let i of this.adj[v].values())
            {
                if(this.tc[s][i] == 0)
                    this.DFSUtil(s, i);
            }
        }

        // The function to find transitive closure. It uses
        // recursive DFSUtil()
        transitiveClosure()
        {
            // Call the recursive helper function to print DFS
            // traversal starting from all vertices one by one
            for(let i = 0; i < this.V; i++)
                this.DFSUtil(i, i); // Every vertex is reachable from self

            document.write("Transitive closure matrix is<br />")
            for(let i=0; i < this.V; i++)
            {    
                for(let j=0; j < this.V; j++)
                    document.write(this.tc[i][j] + " ");
                document.write("<br />")
            }
        }

    };

    // driver code
    g = new Graph(4);
    g.addEdge(0, 1);
    g.addEdge(0, 2);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(2, 3);
    g.addEdge(3, 3);

    g.transitiveClosure();
    
    // This code is contributed by cavi4762.
</script>
# Python program to print transitive
# closure of a graph.
from collections import defaultdict
 
class Graph:
 
    def __init__(self,vertices):
        # No. of vertices
        self.V = vertices
 
        # default dictionary to store graph
        self.graph = defaultdict(list)
 
        # To store transitive closure
        self.tc = [[0 for j in range(self.V)] for i in range(self.V)]
 
    # function to add an edge to graph
    def addEdge(self, u, v):
        self.graph[u].append(v)
 
    # A recursive DFS traversal function that finds
    # all reachable vertices for s
    def DFSUtil(self, s, v):
 
        # Mark reachability from s to v as true.
        if(s == v):
            if( v in self.graph[s]):
              self.tc[s][v] = 1
        else:
            self.tc[s][v] = 1
 
        # Find all the vertices reachable through v
        for i in self.graph[v]:
            if self.tc[s][i] == 0:
                if s==i:
                   self.tc[s][i]=1
                else:
                   self.DFSUtil(s, i)
 
    # The function to find transitive closure. It uses
    # recursive DFSUtil()
    def transitiveClosure(self):
 
        # Call the recursive helper function to print DFS
        # traversal starting from all vertices one by one
        for i in range(self.V):
            self.DFSUtil(i, i)
        
        print(self.tc)
 
# Create a graph given in the above diagram
g = Graph(4)
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
 
g.transitiveClosure()

Output
Transitive closure matrix is 
1 1 1 1 
1 1 1 1 
1 1 1 1 
0 0 0 1 



Time Complexity : O(V^3) where V is the number of vertexes . For dense graph, it would become O(V3) and for sparse graph, it would become O(V2).
Auxiliary Space: O(V^2) where V is number of vertices.

Article Tags :