# Transform One String to Another using Minimum Number of Given Operation

Given two strings A and B, the task is to convert A to B if possible. The only operation allowed is to put any character from A and insert it at front. Find if it’s possible to convert the string. If yes, then output minimum no. of operations required for transformation.

Examples:

```Input:  A = "ABD", B = "BAD"
Output: 1
Explanation: Pick B and insert it at front.

Input:  A = "EACBD", B = "EABCD"
Output: 3
Explanation: Pick B and insert at front, EACBD => BEACD
Pick A and insert at front, BEACD => ABECD
Pick E and insert at front, ABECD => EABCD```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Checking whether a string can be transformed to another is simple. We need to check whether both strings have same number of characters and same set of characters. This can be easily done by creating a count array for first string and checking if second string has same count of every character.
How to find minimum number of operations when we are sure that we can transform A to B? The idea is to start matching from last characters of both strings. If last characters match, then our task reduces to n-1 characters. If last characters don’t match, then find the position of B’s mismatching character in A. The difference between two positions indicates that these many characters of A must be moved before current character of A.
Below is complete algorithm.
1) Find if A can be transformed to B or not by first creating a count array for all characters of A, then checking with B if B has same count for every character.
2) Initialize result as 0.
2) Start traversing from end of both strings.
……a) If current characters of A and B match, i.e., A[i] == B[j]
………then do i = i-1 and j = j-1
……b) If current characters don’t match, then search B[j] in remaining
………A. While searching, keep incrementing result as these characters
………must be moved ahead for A to B transformation.

Below are the implementations based on this idea.

## C++

 `// C++ program to find minimum number of ` `// operations required to transform one string to other ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find minimum number of operations required to transform ` `// A to B. ` `int` `minOps(string& A, string& B) ` `{ ` `    ``int` `m = A.length(), n = B.length(); ` ` `  `     ``// This parts checks whether conversion is ` `     ``// possible or not ` `    ``if` `(n != m) ` `       ``return` `-1; ` `    ``int` `count; ` `    ``memset``(count, 0, ``sizeof``(count)); ` `    ``for` `(``int` `i=0; i=0; ) ` `    ``{ ` `        ``// If there is a mismatch, then keep incrementing ` `        ``// result 'res' until B[j] is not found in A[0..i] ` `        ``while` `(i>=0 && A[i] != B[j]) ` `        ``{ ` `            ``i--; ` `            ``res++; ` `        ``} ` ` `  `        ``// If A[i] and B[j] match ` `        ``if` `(i >= 0) ` `        ``{ ` `            ``i--; ` `            ``j--; ` `        ``} ` `    ``} ` `    ``return` `res; ` `} ` ` `  `// Driver program ` `int` `main() ` `{ ` `    ``string A = ``"EACBD"``; ` `    ``string B = ``"EABCD"``; ` `    ``cout << ``"Minimum number of operations "` `            ``"required is "` `<< minOps(A, B); ` `    ``return` `0; ` `} `

## Java

 `// Java program to find minimum number of ` `// operations required to transform one  ` `// string to other ` `import` `java.io.*; ` `import` `java.util.*; ` ` `  `public` `class` `GFG { ` `     `  `    ``// Function to find minimum number of ` `    ``// operations required to transform ` `    ``// A to B. ` `    ``public` `static` `int` `minOps(String A, String B) ` `    ``{ ` `         `  `        ``// This parts checks whether conversion is ` `        ``// possible or not ` `        ``if``(A.length() != B.length()) ` `            ``return` `-``1``; ` `         `  `        ``int` `i, j, res = ``0``; ` `        ``int` `count [] = ``new` `int` `[``256``]; ` `         `  `        ``// count characters in A ` `         `  `        ``// subtract count for every character in B ` `        ``for``(i = ``0``; i < A.length(); i++) ` `        ``{ ` `            ``count[A.charAt(i)]++; ` `            ``count[B.charAt(i)]--; ` `        ``} ` `         `  `        ``// Check if all counts become 0 ` `        ``for``(i = ``0``; i < ``256``; i++) ` `            ``if``(count[i] != ``0``) ` `                ``return` `-``1``; ` `         `  `        ``i = A.length() - ``1``; ` `        ``j = B.length() - ``1``; ` ` `  `        ``while``(i >= ``0``) ` `        ``{ ` `            ``// If there is a mismatch, then  ` `            ``// keep incrementing result 'res' ` `            ``// until B[j] is not found in A[0..i] ` `            ``if``(A.charAt(i) != B.charAt(j)) ` `                ``res++; ` `            ``else` `                ``j--; ` `            ``i--;          ` `        ``} ` `        ``return` `res;      ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``String A = ``"EACBD"``; ` `        ``String B = ``"EABCD"``;  ` `         `  `        ``System.out.println(``"Minimum number of "` `                    ``+ ``"operations required is "`  `                                 ``+ minOps(A, B)); ` `    ``} ` `} ` ` `  `// This code is contributed by Dipesh Jain ` `// (dipesh_jain) `

## Python

 `# Python program to find the minimum number of ` `# operations required to transform one string to other ` ` `  `# Function to find minimum number of operations required ` `# to transform A to B ` `def` `minOps(A, B): ` `    ``m ``=` `len``(A) ` `    ``n ``=` `len``(B) ` ` `  `    ``# This part checks whether conversion is possible or not ` `    ``if` `n !``=` `m: ` `        ``return` `-``1` ` `  `    ``count ``=` `[``0``] ``*` `256` ` `  `    ``for` `i ``in` `xrange``(n):        ``# count characters in A ` `        ``count[``ord``(B[i])] ``+``=` `1` `    ``for` `i ``in` `xrange``(n):        ``# subtract count for every char in B ` `        ``count[``ord``(A[i])] ``-``=` `1` `    ``for` `i ``in` `xrange``(``256``):    ``# Check if all counts become 0 ` `        ``if` `count[i]: ` `            ``return` `-``1` ` `  `    ``# This part calculates the number of operations required ` `    ``res ``=` `0` `    ``i ``=` `n``-``1` `    ``j ``=` `n``-``1`     `    ``while` `i >``=` `0``: ` `     `  `        ``# if there is a mismatch, then keep incrementing ` `        ``# result 'res' until B[j] is not found in A[0..i] ` `        ``while` `i>``=` `0` `and` `A[i] !``=` `B[j]: ` `            ``i ``-``=` `1` `            ``res ``+``=` `1` ` `  `        ``# if A[i] and B[j] match ` `        ``if` `i >``=` `0``: ` `            ``i ``-``=` `1` `            ``j ``-``=` `1` ` `  `    ``return` `res ` ` `  `# Driver program ` `A ``=` `"EACBD"` `B ``=` `"EABCD"` `print` `"Minimum number of operations required is "` `+` `str``(minOps(A,B)) ` `# This code is contributed by Bhavya Jain `

## C#

 `// C# program to find minimum number of  ` `// operations required to transform one  ` `// string to other  ` `using` `System; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to find minimum number of  ` `// operations required to transform  ` `// A to B.  ` `public` `static` `int` `minOps(``string` `A, ``string` `B) ` `{ ` ` `  `    ``// This parts checks whether  ` `    ``// conversion is possible or not  ` `    ``if` `(A.Length != B.Length) ` `    ``{ ` `        ``return` `-1; ` `    ``} ` ` `  `    ``int` `i, j, res = 0; ` `    ``int``[] count = ``new` `int` `; ` ` `  `    ``// count characters in A  ` ` `  `    ``// subtract count for every  ` `    ``// character in B  ` `    ``for` `(i = 0; i < A.Length; i++) ` `    ``{ ` `        ``count[A[i]]++; ` `        ``count[B[i]]--; ` `    ``} ` ` `  `    ``// Check if all counts become 0  ` `    ``for` `(i = 0; i < 256; i++) ` `    ``{ ` `        ``if` `(count[i] != 0) ` `        ``{ ` `            ``return` `-1; ` `        ``} ` `    ``} ` ` `  `    ``i = A.Length - 1; ` `    ``j = B.Length - 1; ` ` `  `    ``while` `(i >= 0) ` `    ``{ ` `        ``// If there is a mismatch, then  ` `        ``// keep incrementing result 'res'  ` `        ``// until B[j] is not found in A[0..i]  ` `        ``if` `(A[i] != B[j]) ` `        ``{ ` `            ``res++; ` `        ``} ` `        ``else` `        ``{ ` `            ``j--; ` `        ``} ` `        ``i--; ` `    ``} ` `    ``return` `res; ` `} ` ` `  `// Driver code  ` `public` `static` `void` `Main(``string``[] args) ` `{ ` `    ``string` `A = ``"EACBD"``; ` `    ``string` `B = ``"EABCD"``; ` ` `  `    ``Console.WriteLine(``"Minimum number of "` `+  ` `                      ``"operations required is "` `+  ` `                       ``minOps(A, B)); ` `} ` `} ` ` `  `// This code is contributed by Shrikant13 `

## PHP

 `=0; ) ` `    ``{ ` `        ``// If there is a mismatch, then keep incrementing ` `        ``// result 'res' until B[j] is not found in A[0..i] ` `        ``while` `(``\$i``>=0 && ``\$A``[``\$i``] != ``\$B``[``\$j``]) ` `        ``{ ` `            ``\$i``--; ` `            ``\$res``++; ` `        ``} ` `  `  `        ``// If A[i] and B[j] match ` `        ``if` `(``\$i` `>= 0) ` `        ``{ ` `            ``\$i``--; ` `            ``\$j``--; ` `        ``} ` `    ``} ` `    ``return` `\$res``; ` `} ` `  `  `// Driver program ` ` `  `\$A` `= ``"EACBD"``; ` `\$B` `= ``"EABCD"``; ` `echo` `"Minimum number of operations "``. ` `            ``"required is "``. minOps(``\$A``, ``\$B``); ` `return` `0; ` `?> `

Output:

`Minimum number of operations required is 3`

Time Complexity: O(n), please note that i is always decremented (in while loop and in if), and the for loop starts from n-1 and runs while i >= 0.

Thanks to Gaurav Ahirwar for above solution.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

16

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.