# Transform N to Minimum possible value

Given two numbers and N and D. Apply any of two below operations to N:

2. change N to digitsum(N), where digitsum(N) is the sum of digits of N

The task is to transform N to the minimum possible value. Print the minimum possible value of N and the number of times the given operations applied(any one of them). The number of operations must be minimum.

Examples:

Input : N = 2, D = 1
Output : 1 9
Perfome Type1 opeation 8 times and Type2 opeation 1 time

Input : N = 9, D = 3
Output : 3, 2
Apply one type1 operation first and then type2 operation

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach :
Let Dr(x) be a function defined for integer x as :

• Dr(x) = x, if 0 <= x <= 9
• else, Dr(x) = Dr(Sum-of-digits(x))

The function Dr(x) is the digital root of a number x.

• Dr(a+b) = Dr(Dr(a) + Dr(b))
• Dr(ab) = Dr(Dr(a) * Dr(b))

Important observation : The minimum value is always the minimum over : Dr(N + kD) for some non-negative integer k.

Dr(N + kD) = Dr(Dr(N) + Dr(kD))          (1)


Now, Dr(kd) = Dr(Dr(k) * Dr(D))
Possible values of Dr(k) are 0, 1, 2…9, given by numbers k=0, 1, 2…9

Dr(x) = Dr(Sum-of-digits(x))             (2)

• The minimum value for N is equal to the minimum value for Sum-of-digits(N). If we reduce this answer once and add D, the minimum value that can be obtained wouldn’t change. So, if it is required to perform a reduce operation and then an add operation, then we can do the add operation and then the reduce operation without affecting the possible roots we can reach. This is evident from combination of formulae (1) and (2)
• So, we can do all add operations first, all reduce operations later, and reach any number that can be possibly reached by any set of operations. Using the above claims, we can prove the minimum possible value is the minimum of Dr(N + kD) where  0 <= k <= 9.
• To find the minimum number of steps, note that the relative order of the add and Sum-of-digits operations does affect the answer. Also, note that the Sum-of-digits function is an decreases extremely fast.
• Any number <= 1010 goes to a number <= 90, any number <= 90 goes to something <= 18 and so on. In short, any number can be reduced to its digital root in <= 5 steps.
• Via this, we can prove that the value of the minimum steps can never be greater than 15. This is a loose upper bound, not the exact one.
• Use brute force recursion algorithm, that at each step branches in 2 different directions, one x = Sum-of-digits(x), the other being x = x+D, but only until a recursion depth of 15. In this way, we stop after exploring 215 different ways.

Below is the implementation of the above approach:

## C++

 // CPP program to transform N to the minimum value  #include  using namespace std;     // Intialising the answer  int min_val = INT_MAX;  int min_steps = 0;     // Function to find the digitsum  int sumOfDigits(int n)  {      string s = to_string(n);         int sum = 0;         // Iterate over all digits and add them      for (int i = 0; i < s.length(); i++) {          sum += (s[i] - '0');      }             // Return the digit su,      return sum;  }     // Function to transform N to the minimum value  void Transform(int n, int d, int steps)  {      // If the final value is lesser than least value      if (n < min_val) {          min_val = n;          min_steps = steps;      }         // If final value is equal to least value then check       // for lesser number of steps to reach this value      else if (n == min_val) {          min_steps = min(min_steps, steps);      }         // The value will be obtained in less than 15 steps as       // proved so applying normal recursive operations      if (steps < 15) {          Transform(sumOfDigits(n), d, steps + 1);          Transform(n + d, d, steps + 1);      }  }     // Driver code  int main()  {      int N = 9, D = 3;             // Function call      Transform(N, D, 0);             // Print the answers      cout << min_val << " " << min_steps;             return 0;  }

## Java

 // JAVA program to transform N to the minimum value  import java.util.*;     class GFG{      // Intialising the answer  static int min_val = Integer.MAX_VALUE;  static int min_steps = 0;      // Function to find the digitsum  static int sumOfDigits(int n)  {      String s = String.valueOf(n);          int sum = 0;          // Iterate over all digits and add them      for (int i = 0; i < s.length(); i++) {          sum += (s.charAt(i) - '0');      }              // Return the digit su,      return sum;  }      // Function to transform N to the minimum value  static void Transform(int n, int d, int steps)  {      // If the final value is lesser than least value      if (n < min_val) {          min_val = n;          min_steps = steps;      }          // If final value is equal to least value then check       // for lesser number of steps to reach this value      else if (n == min_val) {          min_steps = Math.min(min_steps, steps);      }          // The value will be obtained in less than 15 steps as       // proved so applying normal recursive operations      if (steps < 15) {          Transform(sumOfDigits(n), d, steps + 1);          Transform(n + d, d, steps + 1);      }  }      // Driver code  public static void main(String[] args)  {      int N = 9, D = 3;              // Function call      Transform(N, D, 0);              // Print the answers      System.out.print(min_val+ " " +  min_steps);          }  }     // This code is contributed by 29AjayKumar

## Python3

 # Python3 program to transform N to the minimum value  import sys;     # Intialising the answer  min_val = sys.maxsize;  min_steps = 0;     # Function to find the digitsum  def sumOfDigits(n) :         s = str(n);         sum = 0;         # Iterate over all digits and add them      for i in range(len(s)) :          sum += (ord(s[i]) - ord('0'));             # Return the digit su,      return sum;     # Function to transform N to the minimum value  def Transform(n, d, steps) :      global min_val;global min_steps;             # If the final value is lesser than least value      if (n < min_val) :          min_val = n;          min_steps = steps;         # If final value is equal to least value then check       # for lesser number of steps to reach this value      elif (n == min_val) :          min_steps = min(min_steps, steps);             # The value will be obtained in less than 15 steps as       # proved so applying normal recursive operations      if (steps < 15) :          Transform(sumOfDigits(n), d, steps + 1);          Transform(n + d, d, steps + 1);     # Driver code  if __name__ == "__main__" :         N = 9; D = 3;             # Function call      Transform(N, D, 0);             # Print the answers      print(min_val, min_steps);         # This code is contributed by Yash_R

## C#

 // C# program to transform N to the minimum value  using System;     class GFG{      // Intialising the answer  static int min_val = int.MaxValue;  static int min_steps = 0;      // Function to find the digitsum  static int sumOfDigits(int n)  {      string s = n.ToString();           int sum = 0;          // Iterate over all digits and add them      for (int i = 0; i < s.Length; i++) {          sum += (s[i] - '0');      }              // Return the digit su,      return sum;  }      // Function to transform N to the minimum value  static void Transform(int n, int d, int steps)  {      // If the final value is lesser than least value      if (n < min_val) {          min_val = n;          min_steps = steps;      }          // If final value is equal to least value then check       // for lesser number of steps to reach this value      else if (n == min_val) {          min_steps = Math.Min(min_steps, steps);      }          // The value will be obtained in less than 15 steps as       // proved so applying normal recursive operations      if (steps < 15) {          Transform(sumOfDigits(n), d, steps + 1);          Transform(n + d, d, steps + 1);      }  }      // Driver code  public static void Main(string[] args)  {      int N = 9, D = 3;              // Function call      Transform(N, D, 0);              // Print the answers      Console.Write(min_val+ " " +  min_steps);   }  }     // This code is contributed by Yash_R

Output:

3 2


Time Complexity : Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : 29AjayKumar, Yash_R