Skip to content
Related Articles

Related Articles

Improve Article

Transform N to Minimum possible value

  • Difficulty Level : Expert
  • Last Updated : 07 Jul, 2021

Given two numbers and N and D. Apply any of two below operations to N
 

  1. add D to N
  2. change N to digitsum(N), where digitsum(N) is the sum of digits of N

The task is to transform N to the minimum possible value. Print the minimum possible value of N and the number of times the given operations applied(any one of them). The number of operations must be minimum. 
Examples: 
 

Input : N = 2, D = 1 
Output : 1 9 
Perform Type1 operation 8 times and Type2 operation 1 time 
Input : N = 9, D = 3 
Output : 3, 2 
Apply one type1 operation first and then type2 operation 
 

 

Prerequisites: 
1. Digital Root (repeated digital sum) of the given large integer 
2. Numbers in a Range with given Digital Root
Approach : 
Let Dr(x) be a function defined for integer x as :
 



  • Dr(x) = x, if 0 <= x <= 9
  • else, Dr(x) = Dr(Sum-of-digits(x))

The function Dr(x) is the digital root of a number x. 
 

  • Dr(a+b) = Dr(Dr(a) + Dr(b))
  • Dr(ab) = Dr(Dr(a) * Dr(b))

Important observation : The minimum value is always the minimum over : Dr(N + kD) for some non-negative integer k. 
 

Dr(N + kD) = Dr(Dr(N) + Dr(kD))          (1)

Now, Dr(kd) = Dr(Dr(k) * Dr(D)) 
Possible values of Dr(k) are 0, 1, 2…9, given by numbers k=0, 1, 2…9 
 

Dr(x) = Dr(Sum-of-digits(x))             (2)

 

  • The minimum value for N is equal to the minimum value for Sum-of-digits(N). If we reduce this answer once and add D, the minimum value that can be obtained wouldn’t change. So, if it is required to perform a reduce operation and then an add operation, then we can do the add operation and then the reduce operation without affecting the possible roots we can reach. This is evident from combination of formulae (1) and (2) 
     
  • So, we can do all add operations first, all reduce operations later, and reach any number that can be possibly reached by any set of operations. Using the above claims, we can prove the minimum possible value is the minimum of Dr(N + kD) where 0 <= k <= 9. 
     
  • To find the minimum number of steps, note that the relative order of the add and Sum-of-digits operations does affect the answer. Also, note that the Sum-of-digits function is an decreases extremely fast. 
     
  • Any number <= 1010 goes to a number <= 90, any number <= 90 goes to something <= 18 and so on. In short, any number can be reduced to its digital root in <= 5 steps. 
     
  • Via this, we can prove that the value of the minimum steps can never be greater than 15. This is a loose upper bound, not the exact one. 
     
  • Use brute force recursion algorithm, that at each step branches in 2 different directions, one x = Sum-of-digits(x), the other being x = x+D, but only until a recursion depth of 15. In this way, we stop after exploring 215 different ways. 
     

Below is the implementation of the above approach: 
 

C++




// CPP program to transform N to the minimum value
#include <bits/stdc++.h>
using namespace std;
 
// Initialising the answer
int min_val = INT_MAX;
int min_steps = 0;
 
// Function to find the digitsum
int sumOfDigits(int n)
{
    string s = to_string(n);
 
    int sum = 0;
 
    // Iterate over all digits and add them
    for (int i = 0; i < s.length(); i++) {
        sum += (s[i] - '0');
    }
     
    // Return the digit su,
    return sum;
}
 
// Function to transform N to the minimum value
void Transform(int n, int d, int steps)
{
    // If the final value is lesser than least value
    if (n < min_val) {
        min_val = n;
        min_steps = steps;
    }
 
    // If final value is equal to least value then check
    // for lesser number of steps to reach this value
    else if (n == min_val) {
        min_steps = min(min_steps, steps);
    }
 
    // The value will be obtained in less than 15 steps as
    // proved so applying normal recursive operations
    if (steps < 15) {
        Transform(sumOfDigits(n), d, steps + 1);
        Transform(n + d, d, steps + 1);
    }
}
 
// Driver code
int main()
{
    int N = 9, D = 3;
     
    // Function call
    Transform(N, D, 0);
     
    // Print the answers
    cout << min_val << " " << min_steps;
     
    return 0;
}

Java




// JAVA program to transform N to the minimum value
import java.util.*;
 
class GFG{
  
// Initialising the answer
static int min_val = Integer.MAX_VALUE;
static int min_steps = 0;
  
// Function to find the digitsum
static int sumOfDigits(int n)
{
    String s = String.valueOf(n);
  
    int sum = 0;
  
    // Iterate over all digits and add them
    for (int i = 0; i < s.length(); i++) {
        sum += (s.charAt(i) - '0');
    }
      
    // Return the digit su,
    return sum;
}
  
// Function to transform N to the minimum value
static void Transform(int n, int d, int steps)
{
    // If the final value is lesser than least value
    if (n < min_val) {
        min_val = n;
        min_steps = steps;
    }
  
    // If final value is equal to least value then check
    // for lesser number of steps to reach this value
    else if (n == min_val) {
        min_steps = Math.min(min_steps, steps);
    }
  
    // The value will be obtained in less than 15 steps as
    // proved so applying normal recursive operations
    if (steps < 15) {
        Transform(sumOfDigits(n), d, steps + 1);
        Transform(n + d, d, steps + 1);
    }
}
  
// Driver code
public static void main(String[] args)
{
    int N = 9, D = 3;
      
    // Function call
    Transform(N, D, 0);
      
    // Print the answers
    System.out.print(min_val+ " " +  min_steps);
      
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to transform N to the minimum value
import sys;
 
# Initialising the answer
min_val = sys.maxsize;
min_steps = 0;
 
# Function to find the digitsum
def sumOfDigits(n) :
 
    s = str(n);
 
    sum = 0;
 
    # Iterate over all digits and add them
    for i in range(len(s)) :
        sum += (ord(s[i]) - ord('0'));
     
    # Return the digit su,
    return sum;
 
# Function to transform N to the minimum value
def Transform(n, d, steps) :
    global min_val;global min_steps;
     
    # If the final value is lesser than least value
    if (n < min_val) :
        min_val = n;
        min_steps = steps;
 
    # If final value is equal to least value then check
    # for lesser number of steps to reach this value
    elif (n == min_val) :
        min_steps = min(min_steps, steps);
     
    # The value will be obtained in less than 15 steps as
    # proved so applying normal recursive operations
    if (steps < 15) :
        Transform(sumOfDigits(n), d, steps + 1);
        Transform(n + d, d, steps + 1);
 
# Driver code
if __name__ == "__main__" :
 
    N = 9; D = 3;
     
    # Function call
    Transform(N, D, 0);
     
    # Print the answers
    print(min_val, min_steps);
     
# This code is contributed by Yash_R

C#




// C# program to transform N to the minimum value
using System;
 
class GFG{
  
// Initialising the answer
static int min_val = int.MaxValue;
static int min_steps = 0;
  
// Function to find the digitsum
static int sumOfDigits(int n)
{
    string s = n.ToString();
  
    int sum = 0;
  
    // Iterate over all digits and add them
    for (int i = 0; i < s.Length; i++) {
        sum += (s[i] - '0');
    }
      
    // Return the digit su,
    return sum;
}
  
// Function to transform N to the minimum value
static void Transform(int n, int d, int steps)
{
    // If the final value is lesser than least value
    if (n < min_val) {
        min_val = n;
        min_steps = steps;
    }
  
    // If final value is equal to least value then check
    // for lesser number of steps to reach this value
    else if (n == min_val) {
        min_steps = Math.Min(min_steps, steps);
    }
  
    // The value will be obtained in less than 15 steps as
    // proved so applying normal recursive operations
    if (steps < 15) {
        Transform(sumOfDigits(n), d, steps + 1);
        Transform(n + d, d, steps + 1);
    }
}
  
// Driver code
public static void Main(string[] args)
{
    int N = 9, D = 3;
      
    // Function call
    Transform(N, D, 0);
      
    // Print the answers
    Console.Write(min_val+ " " +  min_steps);
}
}
 
// This code is contributed by Yash_R

Javascript




<script>
// Javascript program to transform N to the minimum value
 
// Let initialising the answer
let min_val = Number.MAX_VALUE;
let min_steps = 0;
  
// Function to find the digitsum
function sumOfDigits(n)
{
    let s = n.toString();
  
    let sum = 0;
  
    // Iterate over all digits and add them
    for (let i = 0; i < s.length; i++) {
        sum += (s[i] - '0');
    }
      
    // Return the digit su,
    return sum;
}
  
// Function to transform N to the minimum value
function Transform(n, d, steps)
{
    // If the final value is lesser than least value
    if (n < min_val) {
        min_val = n;
        min_steps = steps;
    }
  
    // If final value is equal to least value then check
    // for lesser number of steps to reach this value
    else if (n == min_val) {
        min_steps = Math.min(min_steps, steps);
    }
  
    // The value will be obtained in less than 15 steps as
    // proved so applying normal recursive operations
    if (steps < 15) {
        Transform(sumOfDigits(n), d, steps + 1);
        Transform(n + d, d, steps + 1);
    }
}
 
// Driver Code
     
    let N = 9, D = 3;
      
    // Function call
    Transform(N, D, 0);
      
    // Prlet the answers
    document.write(min_val+ " " +  min_steps);
     
</script>
Output: 
3 2

 

Time Complexity : O(T \cdot 2^{15} \cdot log_{10} N )
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :