Skip to content
Related Articles

Related Articles

Improve Article
Total ways of choosing X men and Y women from a total of M men and W women
  • Last Updated : 11 May, 2021

Given four integers X, Y, M and W. The task is to find the number of ways to choose X men and Y women from total M men and W women.
Examples: 
 

Input: X = 1, Y = 2, M = 1, W = 3 
Output:
Way 1: Choose the only man and 1st and 2nd women. 
Way 2: Choose the only man and 2nd and 3rd women. 
Way 3: Choose the only man and 1st and 3rd women.
Input: X = 4, Y = 3, M = 6, W = 5 
Output: 150 
 

 

Approach: The total number of ways of choosing X men from a total of M men is MCX and the total number of ways of choosing Y women from W women is WCY. Hence, the total number of combined ways will be MCX * WCY.
Below is the implementation of the above approach: 
 

C++




// C++ implementataion of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// value of ncr effectively
int ncr(int n, int r)
{
 
    // Initialize the answer
    int ans = 1;
 
    for (int i = 1; i <= r; i += 1) {
 
        // Divide simultaneously by
        // i to avoid overflow
        ans *= (n - r + i);
        ans /= i;
    }
    return ans;
}
 
// Function to return the count of required ways
int totalWays(int X, int Y, int M, int W)
{
    return (ncr(M, X) * ncr(W, Y));
}
 
int main()
{
    int X = 4, Y = 3, M = 6, W = 5;
 
    cout << totalWays(X, Y, M, W);
 
    return 0;
}

Java




// JAVA implementataion of the approach
import java.io.*;
 
class GFG
{
         
    // Function to return the
    // value of ncr effectively
    static int ncr(int n, int r)
    {
     
        // Initialize the answer
        int ans = 1;
     
        for (int i = 1; i <= r; i += 1)
        {
     
            // Divide simultaneously by
            // i to avoid overflow
            ans *= (n - r + i);
            ans /= i;
        }
        return ans;
    }
     
    // Function to return the count of required ways
    static int totalWays(int X, int Y, int M, int W)
    {
        return (ncr(M, X) * ncr(W, Y));
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int X = 4, Y = 3, M = 6, W = 5;
     
        System.out.println(totalWays(X, Y, M, W));
    }
}
 
// This code is contributed by ajit_23

Python3




# Python3 implementataion of the approach
 
# Function to return the
# value of ncr effectively
def ncr(n, r):
    # Initialize the answer
    ans = 1
 
    for i in range(1,r+1):
 
        # Divide simultaneously by
        # i to avoid overflow
        ans *= (n - r + i)
        ans //= i
    return ans
 
# Function to return the count of required ways
def totalWays(X, Y, M, W):
 
    return (ncr(M, X) * ncr(W, Y))
 
X = 4
Y = 3
M = 6
W = 5
 
print(totalWays(X, Y, M, W))
 
# This code is contributed by mohit kumar 29

C#




// C# implementataion of the approach
using System;
 
class GFG
{
     
    // Function to return the
    // value of ncr effectively
    static int ncr(int n, int r)
    {
     
        // Initialize the answer
        int ans = 1;
     
        for (int i = 1; i <= r; i += 1)
        {
     
            // Divide simultaneously by
            // i to avoid overflow
            ans *= (n - r + i);
            ans /= i;
        }
        return ans;
    }
     
    // Function to return the count of required ways
    static int totalWays(int X, int Y, int M, int W)
    {
        return (ncr(M, X) * ncr(W, Y));
    }
     
    // Driver code
    static public void Main ()
    {
        int X = 4, Y = 3, M = 6, W = 5;
     
        Console.WriteLine(totalWays(X, Y, M, W));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
// Javascript implementataion of the approach
 
// Function to return the
// value of ncr effectively
function ncr(n, r)
{
 
    // Initialize the answer
    let ans = 1;
 
    for (let i = 1; i <= r; i += 1) {
 
        // Divide simultaneously by
        // i to avoid overflow
        ans *= (n - r + i);
        ans = parseInt(ans / i);
    }
    return ans;
}
 
// Function to return the count of required ways
function totalWays(X, Y, M, W)
{
    return (ncr(M, X) * ncr(W, Y));
}
 
// Driver Code
    let X = 4, Y = 3, M = 6, W = 5;
 
    document.write(totalWays(X, Y, M, W));
 
// This code is contributed by rishavmahato348.
</script>
Output: 
150

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :